1
|
Fleck M, Darouich S, Hansen N, Gross J. TAMie Force Field for Alkanethiols: Multifidelity Gaussian Processes for Dealing with Scarce Experimental Data. J Phys Chem B 2024; 128:9544-9552. [PMID: 39292815 DOI: 10.1021/acs.jpcb.4c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
This study extends the transferable anisotropic Mie potential (TAMie) to alkanethiols. The force field parameters are optimized by using an analytic equation of state as a surrogate model. Given the lack of experimental density data at elevated temperatures where Monte Carlo simulations have high statistical precision, the equation of state is supplemented by a linear multifidelity Gaussian process approach to bridge the temperature gap. Force field parameters are adjusted by minimizing squared deviations of calculated vapor pressures and liquid densities from experimental data of 1-propanethiol, 1-butanethiol and 1-pentanethiol leading to small mean absolute relative deviations in liquid densities and vapor pressures. The force field is transferable to higher 1-thiols, as shown for 1-hexanethiol and 1-octanethiol. Individual parameter sets are provided for methanethiol and ethanethiol. The shear viscosity of pure substances is predicted in fair agreement with experimental data, considering that it is not included in the parametrization. Further, the phase behavior of binary mixtures of alkanethiols with alkanes is studied, and predictions of the TAMie model are found in excellent agreement with experimental data.
Collapse
Affiliation(s)
- Maximilian Fleck
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| | - Samir Darouich
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| |
Collapse
|
2
|
Fleck M, Darouich S, Hansen N, Gross J. Transferable Anisotropic Mie Potential Force Field for Alkanediols. J Phys Chem B 2024. [PMID: 38709669 DOI: 10.1021/acs.jpcb.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The development of force fields for polyfunctional molecules, such as alkanediols, requires a careful account of different average intramolecular conformations for gas states compared to dense liquid states, where intra- and intermolecular hydrogen bonds compete. In the present work, the transferable anisotropic Mie (TAMie) potential is extended to 1,n-alkanediols. Using the convention that intramolecular nonbonded interactions up to and including the third neighbor are excluded, all force field parameters developed previously for 1-alcohols were transferred to 1,5-pentanediol and beyond, with good agreement with experimental phase equilibrium data. To obtain trans-gauche ratios of 1,2-ethanediol and 1,3-propanediol that are consistent with experimental results, the propensities for intra- and intermolecular hydrogen bonds had to be balanced. This was achieved by parameterizing the intramolecular dihedral energy functions governing the O-C-C-O and O-C-C-C angles while intramolecular charge-charge interactions were active. All partial charges belonging to a functional group are collected in a charge group and all interactions among two charge groups are evaluated even if they are separated by less than three bonds. With this approach, it is possible to apply the nonbonded parameters from 1-alcohols to alkanediols without further refinement. The agreement with experimental phase equilibrium and shear viscosity data is of similar quality as for the 1-alcohols and the trans-gauche ratio agrees with literature results from spectroscopic measurements and ab initio calculations.
Collapse
Affiliation(s)
- Maximilian Fleck
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Samir Darouich
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Schmitt S, Kanagalingam G, Fleckenstein F, Froescher D, Hasse H, Stephan S. Extension of the MolMod Database to Transferable Force Fields. J Chem Inf Model 2023; 63:7148-7158. [PMID: 37947503 DOI: 10.1021/acs.jcim.3c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
MolMod, a web-based database for classical force fields for molecular simulations of fluids [Mol. Sim. 45, 10 (2019), 806-814], was extended to transferable force fields. Eight transferable force fields, including all-atom and united-atom type force fields, were implemented in the MolMod database: OPLS-UA, OPLS-AA, COMPASS, CHARMM, GROMOS, TraPPE, Potoff, and TAMie. These transferable force fields cover a large variety of chemical substance classes. The system is designed such that new transferable force fields can be readily integrated. A graphical user interface was implemented that enables the construction of molecules. The MolMod database compiles the force field for the specified component and force field type and provides the corresponding data and meta data as well as ready-to-use input files for the molecule for different simulation engines. This helps the user to flexibly choose molecular models and integrate them swiftly in their individual workflows, reducing risks of input errors in molecular simulations.
Collapse
Affiliation(s)
- Sebastian Schmitt
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern 67663, Germany
| | - Gajanan Kanagalingam
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern 67663, Germany
| | - Florian Fleckenstein
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern 67663, Germany
| | - Daniel Froescher
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern 67663, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern 67663, Germany
| | - Simon Stephan
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern 67663, Germany
| |
Collapse
|
4
|
Oliveira MP, Gonçalves YMH, Ol Gheta SK, Rieder SR, Horta BAC, Hünenberger PH. Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set. J Chem Theory Comput 2022; 18:6757-6778. [PMID: 36190354 DOI: 10.1021/acs.jctc.2c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The level of accuracy that can be achieved by a force field is influenced by choices made in the interaction-function representation and in the relevant simulation parameters. These choices, referred to here as functional-form variants (FFVs), include for example the model resolution, the charge-derivation procedure, the van der Waals combination rules, the cutoff distance, and the treatment of the long-range interactions. Ideally, assessing the effect of a given FFV on the intrinsic accuracy of the force-field representation requires that only the specific FFV is changed and that this change is performed at an optimal level of parametrization, a requirement that may prove extremely challenging to achieve in practice. Here, we present a first attempt at such a comparison for one specific FFV, namely the choice of a united-atom (UA) versus an all-atom (AA) resolution in a force field for saturated acyclic (halo)alkanes. Two force-field versions (UA vs AA) are optimized in an automated way using the CombiFF approach against 961 experimental values for the pure-liquid densities ρliq and vaporization enthalpies ΔHvap of 591 compounds. For the AA force field, the torsional and third-neighbor Lennard-Jones parameters are also refined based on quantum-mechanical rotational-energy profiles. The comparison between the UA and AA resolutions is also extended to properties that have not been included as parameterization targets, namely the surface-tension coefficient γ, the isothermal compressibility κT, the isobaric thermal-expansion coefficient αP, the isobaric heat capacity cP, the static relative dielectric permittivity ϵ, the self-diffusion coefficient D, the shear viscosity η, the hydration free energy ΔGwat, and the free energy of solvation ΔGche in cyclohexane. For the target properties ρliq and ΔHvap, the UA and AA resolutions reach very similar levels of accuracy after optimization. For the nine other properties, the AA representation leads to more accurate results in terms of η; comparably accurate results in terms of γ, κT, αP, ϵ, D, and ΔGche; and less accurate results in terms of cP and ΔGwat. This work also represents a first step toward the calibration of a GROMOS-compatible force field at the AA resolution.
Collapse
Affiliation(s)
- Marina P Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Yan M H Gonçalves
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - S Kashef Ol Gheta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Salomé R Rieder
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Bruno A C Horta
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| |
Collapse
|
5
|
van Westen T, Hammer M, Hafskjold B, Aasen A, Gross J, Wilhelmsen Ø. Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid. J Chem Phys 2022; 156:104504. [DOI: 10.1063/5.0082690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is generally not straightforward to apply molecular-thermodynamic theories to fluids with short-ranged attractive forces between their constituent molecules (or particles). This especially applies to perturbation theories, which, for short-ranged attractive fluids, typically must be extended to high order or may not converge at all. Here, we show that a recent first-order perturbation theory, the uv-theory, holds promise for describing such fluids. As a case study, we apply the uv-theory to a fluid with pair interactions defined by the Lennard-Jones spline potential, which is a short-ranged version of the LJ potential that is known to provide a challenge for equation-of-state development. The results of the uv-theory are compared to those of third-order Barker–Henderson and fourth-order Weeks–Chandler–Andersen perturbation theories, which are implemented using Monte Carlo simulation results for the respective perturbation terms. Theoretical predictions are compared to an extensive dataset of molecular simulation results from this (and previous) work, including vapor–liquid equilibria, first- and second-order derivative properties, the critical region, and metastable states. The uv-theory proves superior for all properties examined. An especially accurate description of metastable vapor and liquid states is obtained, which might prove valuable for future applications of the equation-of-state model to inhomogeneous phases or nucleation processes. Although the uv-theory is analytic, it accurately describes molecular simulation results for both the critical point and the binodal up to at least 99% of the critical temperature. This suggests that the difficulties typically encountered in describing the vapor–liquid critical region are only to a small extent caused by non-analyticity.
Collapse
Affiliation(s)
- Thijs van Westen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Morten Hammer
- Department of Gas Technology, SINTEF Energy Research, NO-7465 Trondheim, Norway
| | - Bjørn Hafskjold
- Porelab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Ailo Aasen
- Department of Gas Technology, SINTEF Energy Research, NO-7465 Trondheim, Norway
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Øivind Wilhelmsen
- Porelab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
6
|
van Westen T, Gross J. Accurate thermodynamics of simple fluids and chain fluids based on first-order perturbation theory and second virial coefficients: uv-theory. J Chem Phys 2021; 155:244501. [PMID: 34972377 DOI: 10.1063/5.0073572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a simplification of our recently proposed uf-theory for describing the thermodynamics of simple fluids and fluids comprising short chain molecules. In its original form, the uf-theory interpolates the Helmholtz energy between a first-order f-expansion and first-order u-expansion as (effective) lower and upper bounds. We here replace the f-bound by a new, tighter (effective) lower bound. The resulting equation of state interpolates between a first-order u-expansion at high densities and another first-order u-expansion that is modified to recover the exact second virial coefficient at low densities. The theory merely requires the Helmholtz energy of the reference fluid, the first-order u-perturbation term, and the total perturbation contribution to the second virial coefficient as input. The revised theory-referred to as uv-theory-is thus simpler than the uf-theory but leads to similar accuracy, as we show for fluids with intermolecular pair interactions governed by a Mie potential. The uv-theory is thereby easier to extend to fluid mixtures and provides more flexibility in extending the model to non-spherical or chain-like molecules. The usefulness of the uv-theory for developing equation-of-state models of non-spherical molecules is here exemplified by developing an equation of state for Lennard-Jones dimers.
Collapse
Affiliation(s)
- Thijs van Westen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| |
Collapse
|
7
|
van Westen T. Algebraic second virial coefficient of the Mie m - 6 intermolecular potential based on perturbation theory. J Chem Phys 2021; 154:234502. [PMID: 34241261 DOI: 10.1063/5.0050659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We propose several simple algebraic approximations for the second virial coefficient of fluids whose molecules interact by a generic Mie m - 6 intermolecular pair potential. In line with a perturbation theory, the parametric equations are formulated as the sum of a contribution due to a reference part of the intermolecular potential and a perturbation. Thereby, the equations provide a convenient (low-density) starting point for developing equation-of-state models of fluids or for developing similar approximations for the virial coefficient of (polymeric-)chain fluids. The choice of Barker and Henderson [J. Chem. Phys. 47, 4714 (1967)] and Weeks, Chandler, and Andersen [Phys. Rev. Lett. 25, 149 (1970); J. Chem. Phys. 54, 5237 (1971); and Phys. Rev. A 4, 1597 (1971)] for the reference part of the potential is considered. Our analytic approximations correctly recover the virial coefficient of the inverse-power potential of exponent m in the high-temperature limit and provide accurate estimates of the temperatures for which the virial coefficient equals zero or takes on its maximum value. Our description of the reference contribution to the second virial coefficient follows from an exact mapping onto the second virial coefficient of hard spheres; we propose a simple algebraic equation for the corresponding effective diameter of the hard spheres, which correctly recovers the low- and high-temperature scaling and limits of the reference fluid's second virial coefficient.
Collapse
Affiliation(s)
- Thijs van Westen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| |
Collapse
|
8
|
van Westen T, Gross J. Accurate first-order perturbation theory for fluids: uf-theory. J Chem Phys 2021; 154:041102. [PMID: 33514104 DOI: 10.1063/5.0031545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We propose a new first-order perturbation theory that provides a near-quantitative description of the thermodynamics of simple fluids. The theory is based on the ansatz that the Helmholtz free energy is bounded below by a first-order Mayer-f expansion. Together with the rigorous upper bound provided by a first-order u-expansion, this brackets the actual free energy between an upper and (effective) lower bound that can both be calculated based on first-order perturbation theory. This is of great practical use. Here, the two bounds are combined into an interpolation scheme for the free energy. The scheme exploits the fact that a first-order Mayer-f perturbation theory is exact in the low-density limit, whereas the accuracy of a first-order u-expansion grows when density increases. This allows an interpolation between the lower "f"-bound at low densities and the upper "u" bound at higher liquid-like densities. The resulting theory is particularly well behaved. Using a density-dependent interpolating function of only two adjustable parameters, we obtain a very accurate representation of the full fluid-phase behavior of a Lennard-Jones fluid. The interpolating function is transferable to other intermolecular potential types, which is here shown for the Mie m-6 family of fluids. The extension to mixtures is simple and accurate without requiring any dependence of the interpolating function on the composition of the mixture.
Collapse
Affiliation(s)
- Thijs van Westen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| |
Collapse
|
9
|
Fischer M, Bauer G, Gross J. Transferable Anisotropic United-Atom Mie (TAMie) Force Field: Transport Properties from Equilibrium Molecular Dynamic Simulations. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthias Fischer
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Gernot Bauer
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| |
Collapse
|
10
|
Baz J, Hansen N, Gross J. Transferable Anisotropic Mie-Potential Force Field for n-Alcohols: Static and Dynamic Fluid Properties of Pure Substances and Binary Mixtures. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jörg Baz
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
11
|
Sauer E, Gross J. Prediction of Adsorption Isotherms and Selectivities: Comparison between Classical Density Functional Theory Based on the Perturbed-Chain Statistical Associating Fluid Theory Equation of State and Ideal Adsorbed Solution Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11690-11701. [PMID: 31403314 DOI: 10.1021/acs.langmuir.9b02378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study gives an assessment of the predictive capability of classical density functional theory (DFT) for adsorption processes of pure substances and mixtures of spherical and nonspherical molecular species. A Helmholtz energy functional based on the perturbed-chain statistical associating fluid theory (PC-SAFT) is applied to calculate isotherms and selectivities of multicomponent adsorption. In order to unambiguously assess the accuracy of the DFT model, we conduct molecular simulations. Monte Carlo (MC) simulations are performed in the grand canonical ensemble using the transition matrix. Two types of systems are studied: a model system, where fluid-fluid and solid-fluid interactions are defined as (single-site) Lennard-Jones interactions, and a more realistic methane-n-butane mixture in a graphite-like pore. Differences between a slit-shaped and a cylindrical pore geometry are examined for the model system. Adsorption isotherms and selectivities obtained from DFT calculations and MC simulations are found in very good agreement, particularly at high pressures. Capillary condensation observed along adsorption isotherms containing n-butane was accurately predicted, both, in equilibrium pressure and in density-increase. Comparisons with results from the ideal adsorbed solution theory are presented, confirming powerful predictions of the DFT approach.
Collapse
Affiliation(s)
- Elmar Sauer
- Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , 70569 Stuttgart , Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , 70569 Stuttgart , Germany
| |
Collapse
|
12
|
Waibel C, Gross J. Polarizable Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: Ethers, n-Alkanes, and Nitrogen. J Chem Theory Comput 2019; 15:2561-2573. [DOI: 10.1021/acs.jctc.8b01238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Waibel
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Hossain S, Kabedev A, Parrow A, Bergström CAS, Larsson P. Molecular simulation as a computational pharmaceutics tool to predict drug solubility, solubilization processes and partitioning. Eur J Pharm Biopharm 2019; 137:46-55. [PMID: 30771454 PMCID: PMC6434319 DOI: 10.1016/j.ejpb.2019.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 01/12/2023]
Abstract
In this review we will discuss how computational methods, and in particular classical molecular dynamics simulations, can be used to calculate solubility of pharmaceutically relevant molecules and systems. To the extent possible, we focus on the non-technical details of these calculations, and try to show also the added value of a more thorough and detailed understanding of the solubilization process obtained by using computational simulations. Although the main focus is on classical molecular dynamics simulations, we also provide the reader with some insights into other computational techniques, such as the COSMO-method, and also discuss Flory-Huggins theory and solubility parameters. We hope that this review will serve as a valuable starting point for any pharmaceutical researcher, who has not yet fully explored the possibilities offered by computational approaches to solubility calculations.
Collapse
Affiliation(s)
- Shakhawath Hossain
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden
| | - Aleksei Kabedev
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Albin Parrow
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; Swedish Drug Delivery Forum (SDDF), Uppsala University, Sweden.
| |
Collapse
|
14
|
Waibel C, Feinler MS, Gross J. A Modified Shifted Force Approach to the Wolf Summation. J Chem Theory Comput 2018; 15:572-583. [PMID: 30418767 DOI: 10.1021/acs.jctc.8b00343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Wolf method for calculation of electrostatic interactions in molecular simulations is known to describe the energy well, whereas the forces have discontinuities. For a more reliable description of the forces this method can be extended with a shifted force approach. This leads to a good description of the forces and precise molecular dynamics simulation, but the description of the energy becomes poorer. In this study we propose a modification of a shifted force extension to describe the energy as well as the forces in better agreement to reference data as determined from the Ewald summation. We show that vapor-liquid phase equilibria (VLE) calculated with Monte Carlo simulations in the grand canonical ensemble and dynamic properties calculated with molecular dynamics simulations can be calculated reliably using this modification to describe the electrostatic interactions.
Collapse
Affiliation(s)
- Christian Waibel
- Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , 70569 Stuttgart , Germany
| | - Mathias Simon Feinler
- Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , 70569 Stuttgart , Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , 70569 Stuttgart , Germany
| |
Collapse
|
15
|
Identifying Pure-Component Parameters of an Analytic Equation of State Using Experimental Surface Tension or Molecular Simulations with a Transferable Force Field. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Messerly RA, Razavi SM, Shirts MR. Configuration-Sampling-Based Surrogate Models for Rapid Parameterization of Non-Bonded Interactions. J Chem Theory Comput 2018; 14:3144-3162. [DOI: 10.1021/acs.jctc.8b00223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Richard A. Messerly
- Thermodynamics Research Center, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - S. Mostafa Razavi
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Michael R. Shirts
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
17
|
Waibel C, Gross J. Modification of the Wolf Method and Evaluation for Molecular Simulation of Vapor–Liquid Equilibria. J Chem Theory Comput 2018; 14:2198-2206. [DOI: 10.1021/acs.jctc.7b01190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Waibel
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| |
Collapse
|
18
|
Janeček J, Said-Aizpuru O, Paricaud P. Long Range Corrections for Inhomogeneous Simulations of Mie n–m Potential. J Chem Theory Comput 2017; 13:4482-4491. [DOI: 10.1021/acs.jctc.7b00212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiří Janeček
- ENSTA ParisTech, UCP, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
| | - Olivier Said-Aizpuru
- ENSTA ParisTech, UCP, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
| | - Patrice Paricaud
- ENSTA ParisTech, UCP, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France
| |
Collapse
|
19
|
van Westen T, Gross J. A critical evaluation of perturbation theories by Monte Carlo simulation of the first four perturbation terms in a Helmholtz energy expansion for the Lennard-Jones fluid. J Chem Phys 2017; 147:014503. [DOI: 10.1063/1.4991008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thijs van Westen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| |
Collapse
|
20
|
Weidler D, Gross J. Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: Aldehydes, Ketones, and Small Cyclic Alkanes. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dominik Weidler
- Institute
of Thermodynamics
and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Joachim Gross
- Institute
of Thermodynamics
and Thermal Process Engineering, University of Stuttgart, D-70569 Stuttgart, Germany
| |
Collapse
|
21
|
Castro-Palacio JC, Hellmann R, Vesovic V. Dilute gas viscosity of n-alkanes represented by rigid Lennard-Jones chains. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1222456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Velisa Vesovic
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Werth S, Stöbener K, Horsch M, Hasse H. Simultaneous description of bulk and interfacial properties of fluids by the Mie potential. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1206218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Stephan Werth
- Department of Mechanical and Process Engineering, Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Katrin Stöbener
- Department for Optimization, Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany
| | - Martin Horsch
- Department of Mechanical and Process Engineering, Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Hans Hasse
- Department of Mechanical and Process Engineering, Laboratory of Engineering Thermodynamics, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
23
|
Oyarzún Rivera B, van Westen T, Vlugt TJH. Liquid-crystal phase equilibria of Lennard-Jones chains. Mol Phys 2016. [DOI: 10.1080/00268976.2015.1134824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Thijs van Westen
- Process and Energy Laboratory, Delft University of Technology, Delft, The Netherlands
| | - Thijs J. H. Vlugt
- Process and Energy Laboratory, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
24
|
Hemmen A, Gross J. Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibrium Calculations: n-Alkanes and n-Olefins. J Phys Chem B 2015; 119:11695-707. [DOI: 10.1021/acs.jpcb.5b01354] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Hemmen
- Institute
of Thermodynamics
and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring
9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute
of Thermodynamics
and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring
9, 70569 Stuttgart, Germany
| |
Collapse
|
25
|
van Westen T, Vlugt TJH, Gross J. On the vapor-liquid equilibrium of attractive chain fluids with variable degree of molecular flexibility. J Chem Phys 2015; 142:224504. [DOI: 10.1063/1.4922264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thijs van Westen
- Process and Energy Laboratory, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Thijs J. H. Vlugt
- Process and Energy Laboratory, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Joachim Gross
- Institut für Thermodynamik und Thermische Verfahrenstechnik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| |
Collapse
|