1
|
Lyu W, Zhu J, Huang X, Chinappi M, Garoli D, Gui C, Yang T, Wang J. Localization and discrimination of GG mismatch in duplex DNA by synthetic ligand-enhanced protein nanopore analysis. Nucleic Acids Res 2024; 52:12191-12200. [PMID: 39413157 PMCID: PMC11551735 DOI: 10.1093/nar/gkae884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/18/2024] Open
Abstract
Mismatched base pairs in DNA are the basis of single-nucleotide polymorphism, one of the major issues in genetic diseases. However, the changes of physical and chemical properties of DNA caused by single-site mismatches are often influenced by the sequence and the structural flexibility of the whole duplex, resulting in a challenge of direct detection of the types and location of mismatches sensitively. In this work, we proposed a synthetic ligand-enhanced protein nanopore analysis of GG mismatch on DNA fragment, inspired by in silico investigation of the specific binding of naphthyridine dimer (ND) on GG mismatch. We demonstrated that both the importing and unzipping processes of the ligand-bound DNA duplex can be efficiently slowed down in α-hemolysin nanopore. This ligand-binding induced slow-down effect of DNA in nanopore is also sensitive to the relative location of the mismatch on DNA duplex. Especially, the GG mismatch close to the end of a DNA fragment, which is hard to be detected by either routine nanopore analysis or tedious nanopore sequencing, can be well differentiated by our ND-enhanced nanopore experiment. These findings provide a promising strategy to localize and discriminate base mismatches in duplex form directly at the single-molecule level.
Collapse
Affiliation(s)
- Wenping Lyu
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
- Department of Physics, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Jianji Zhu
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - XiaoQin Huang
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Mauro Chinappi
- Univ Roma Tor Vergata, Dept Ind Engn, Via Politecn 1, I-00133 Rome, Italy
| | - Denis Garoli
- Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy
- Dipartimento di Scienze e Metodi dell’Ingegneria, Università di Modena e Reggio Emilia, via Amendola 2, 42122 Reggio Emilia, Italy
| | - Cenglin Gui
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Tao Yang
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| | - Jiahai Wang
- Department of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, P.R. China
| |
Collapse
|
2
|
Si W, Zhang Z, Chen J, Wu G, Zhang Y, Sha J. Protein Deceleration and Sequencing Using Si 3N 4-CNT Hybrid Nanopores. Chemphyschem 2024; 25:e202300866. [PMID: 38267372 DOI: 10.1002/cphc.202300866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Protein sequencing is crucial for understanding the complex mechanisms driving biological functions and is of utmost importance in molecular diagnostics and medication development. Nanopores have become an effective tool for single molecule sensing, however, the weak charge and non-uniform charge distribution of protein make capturing and sensing very challenging, which poses a significant obstacle to the development of nanopore-based protein sequencing. In this study, to facilitate capturing of the unfolded protein, highly charged peptide was employed in our simulations, we found that the velocity of unfolded peptide translocating through a hybrid nanopore composed of silicon nitride membrane and carbon nanotube is much slower compared to bare silicon nitride nanopore, it is due to the significant interaction between amino acids and the surface of carbon nanotube. Moreover, by introducing variations in the charge states at the boundaries of carbon nanotube nanopores, the competition and combination of the electrophoretic and electroosmotic flows through the nanopores could be controlled, we then successfully regulated the translocation velocity of unfolded proteins through the hybrid nanopores. The proposed hybrid nanopore effectively retards the translocation velocity of protein through it, facilitates the acquisition of ample information for accurate amino acid identification.
Collapse
Affiliation(s)
- Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Jiayi Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211100, China
| |
Collapse
|
3
|
Hu G, Xi G, Yan H, Gao Z, Wu Z, Lu Z, Tu J. A molecular dynamics investigation of Taq DNA polymerase and its complex with a DNA substrate using a solid-state nanopore biosensor. Phys Chem Chem Phys 2022; 24:29977-29987. [PMID: 36472131 DOI: 10.1039/d2cp03993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins have a small volume difference by the diversity of amino acids, which make protein detection and identification a great challenge. Solid-state nanopore as label-free biosensors has attracted attention with high sensitivity. In this work, we investigated the Taq DNA polymerase before and after combining it with a DNA substrate on a solid-state nanopore through molecular dynamics. In simulation, we analyzed the contribution source of nanopore current blockage. In addition to considering the traditional physical exclusion volume model, the non-covalent interaction between the protein molecules and the pore wall also showed to affect the current blockage in the nanopore. When choosing pores of comparable size to protein molecules, the two states of Taq DNA polymerase produce differentiated non-covalent interactions with the pore wall, which enhanced the amplitude difference in current blockage. As a result, the two DNA polymerases can be distinguished through the distinct current blockage. However, when applying additional pulling force or increasing the pore size of the nanopore, the differences between the current blockages are not significant enough to distinguish. The introduction of the non-covalent interaction makes it clear to understand the current blockage differences, which guide the mechanism between molecules with similar structures or volumes.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zhuwei Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Ziqing Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
4
|
Zollo G, Civitarese T. Ab Initio Properties of Hybrid Cove-Edged Graphene Nanoribbons as Metallic Electrodes for Peptide Sequencing via Transverse Tunneling Current. ACS OMEGA 2022; 7:25164-25170. [PMID: 35910163 PMCID: PMC9330076 DOI: 10.1021/acsomega.2c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently synthesized metallic cove-edged graphene nanoribbons are considered for use as one-dimensional (1D) electrodes for ideal atomistically resolved recognition of amino acids. To this purpose a narrow nanogap device is considered, and the transversal tunneling current flowing across it is calculated during the translocation of a model Gly homopeptide using the nonequilibrium Green function scheme, based on density functional theory. We show that the signal collected from the metallic spin states is characterized by a double peak per residue in analogy with the results obtained with 1D graphene nanoribbon template electrodes. The presented results pave the way for experimentally feasible atomistically resolved tunneling current recognition using metallic edge engineered graphene electrodes obtained by bottom-up fabrication strategies.
Collapse
Affiliation(s)
- Giuseppe Zollo
- Dipartimento di Scienze di Base e Applicate
per l’Ingegneria, University of Rome
“La Sapienza”, Via Antonio Scarpa 14-16, 00161 Rome, Italy
| | - Tommaso Civitarese
- Dipartimento di Scienze di Base e Applicate
per l’Ingegneria, University of Rome
“La Sapienza”, Via Antonio Scarpa 14-16, 00161 Rome, Italy
| |
Collapse
|
5
|
Hu G, Fu J, Qiao Y, Meng H, Wang Z, Tu J, Lu Z. Molecular dynamics discrimination of the conformational states of calmodulin through solid-state nanopores. Phys Chem Chem Phys 2020; 22:19188-19194. [PMID: 32812567 DOI: 10.1039/d0cp02500c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a type of biological macromolecule, the conformation of proteins dynamically changes in a solution, which often results in a change in their function. However, traditional biological assays have significant drawbacks in detecting the conformation properties of proteins. Alternatively, nanopores have potential advantages in this area, which can detect protein in high throughput and without labelling. Herein, we investigated the translocation of calmodulins through silicon nitride nanopores using molecular dynamics (MD) simulation. Initially, the calmodulins were fixed in the nanopore. Distinguished blocked ionic currents were obtained between the two forms of calmodulin. Next, in the translocation simulations, a prominent difference in time resolution was easily found between the two states of calmodulin by using the appropriate voltage and comparable size of pore to protein, rp/rg→ 1, 4.5 nm (where rp is the protein radius and rg is the gyration radius). These simulations on the nanoscale are helpful for developing Ca2+-sensitive ion channels and nanodevices.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Cecconi F, Chinappi M. Native-state fingerprint on the ubiquitin translocation across a nanopore. Phys Rev E 2020; 101:032401. [PMID: 32290013 DOI: 10.1103/physreve.101.032401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/11/2020] [Indexed: 11/07/2022]
Abstract
We study the translocation of the ubiquitin molecule (Ubq) across a channel with a double section which constitutes a general feature of several transmembrane nanopores such as the α-hemolysin (αHL). Our purpose is to establish the structure-dependent character of the Ubq translocation pathway. This implies to find the correspondence, if any, between the translocational unfolding steps and the Ubq native state. For this reason, it is convenient to apply a coarse-grained computational approach, where the protein is described only by the backbone and the force field only exploits the information contained in the native state (in the spirit of Gō-like models, or native-centric models). The αHL-like pore is portrayed as two coaxial confining cylinders: a larger one for the vestibule and a narrower one for the barrel (or stem). Such simplified approach allows a large number of translocation events to be collected by limited computational resources. The co-translocational unfolding of Ubq is described via a few collective variables that characterize the translocation progress. We find two translocation intermediates (stalled conformations) that can be associated with specific unfolding stages. In particular, in the earliest step, the strand S5 unfolds and enters the pore. This step splits the native conformation into two structural clusters packing against each other in the Ubq fold. A second stall occurs when the hairpin of the N terminal engages the stem region.
Collapse
Affiliation(s)
- Fabio Cecconi
- Istituto dei Sistemi Complessi (CNR), Via Taurini 19, I-00185 Roma, Italy
| | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma I-00133, Italy
| |
Collapse
|
7
|
Bonome EL, Cecconi F, Chinappi M. Translocation intermediates of ubiquitin through an α-hemolysin nanopore: implications for detection of post-translational modifications. NANOSCALE 2019; 11:9920-9930. [PMID: 31069350 DOI: 10.1039/c8nr10492a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanopore based sensors constitute a promising approach to single molecule protein characterization being able, in principle, to detect sequences, structural elements and folding states of proteins and polypeptide chains. In narrow nanopores, one of the open issues concerns the coupling between unfolding and translocation. Here, we studied the ubiquitin translocation in an α-hemolysin nanopore, the most widely used pore for nanopore sensing, via all-atom molecular dynamics simulations. We completely characterize the co-translocational unfolding pathway finding that robust translocation intermediates are associated with the rearrangement of secondary structural elements, as also confirmed by coarse grained simulations. An interesting recurrent pattern is the clogging of the α-hemolysin constriction by an N-terminal β-hairpin. This region of ubiquitin is the target of several post-translational modifications. We propose a strategy to detect post-translational modifications at the N-terminal using the α-hemolysin nanopore based on the comparison of the co-translocational unfolding signals associated with modified and unmodified proteins.
Collapse
Affiliation(s)
- Emma Letizia Bonome
- Dipartimento di Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma, Roma, 00185, Italy
| | - Fabio Cecconi
- CNR-Istituto dei Sistemi Complessi UoS Sapienza, Via dei Taurini 19, Roma, 00185, Italy
| | - Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, 00133, Italy.
| |
Collapse
|
8
|
Insights into protein sequencing with an α-Hemolysin nanopore by atomistic simulations. Sci Rep 2019; 9:6440. [PMID: 31015503 PMCID: PMC6478933 DOI: 10.1038/s41598-019-42867-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Single molecule protein sequencing would represent a disruptive burst in proteomic research with important biomedical impacts. Due to their success in DNA sequencing, nanopore based devices have been recently proposed as possible tools for the sequencing of peptide chains. One of the open questions in nanopore protein sequencing concerns the ability of such devices to provide different signals for all the 20 standard amino acids. Here, using equilibrium all-atom molecular dynamics simulations, we estimated the pore clogging in α-Hemolysin nanopore associated to 20 different homopeptides, one for each standard amino acid. Our results show that pore clogging is affected by amino acid volume, hydrophobicity and net charge. The equilibrium estimations are also supported by non-equilibrium runs for calculating the current blockades for selected homopeptides. Finally, we discuss the possibility to modify the α-Hemolysin nanopore, cutting a portion of the barrel region close to the trans side, to reduce spurious signals and, hence, to enhance the sensitivity of the nanopore.
Collapse
|
9
|
Liu Z, Shi X, Wu H. Coarse-grained molecular dynamics study of wettability influence on protein translocation through solid nanopores. NANOTECHNOLOGY 2019; 30:165701. [PMID: 30634172 DOI: 10.1088/1361-6528/aafdd7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein translocation through nanopores is widely involved in molecular sensing and analyzing devices, whereby nanopore surface properties are crucial. However, fundamental understanding of how these properties affect protein motion inside nanopores remains lacking. In this work, we study the influence of nanopore surface wettability on voltage-driven protein translocation through nanopores with coarse-grained molecular dynamics simulations. The results show that the electrophoretic mobility of protein translocation increases as the contact angle of nanopore surface increases from 0° to 90°, but becomes almost constant as the contact angle is above 90°. This observation can be attributed to the variation of the friction coefficient of protein translocation through the nanopores with different nanopore contact angles. We further show that the interaction between nanopore and water, rather than that between the nanopore and protein, dominates the protein transport in nanopores. These findings provide new insights into protein translocation dynamics across nanopores and will be beneficial to the design of high-efficiency nanopore devices for single molecule protein sensing.
Collapse
Affiliation(s)
- Zhenyu Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, People's Republic of China
| | | | | |
Collapse
|
10
|
Prozorovska L, Kidambi PR. State-of-the-Art and Future Prospects for Atomically Thin Membranes from 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801179. [PMID: 30085371 DOI: 10.1002/adma.201801179] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Atomically thin 2D materials, such as graphene, hexagonal boron-nitride, and others, offer new possibilities for ultrathin barrier and membrane applications. While the impermeability of pristine 2D materials to gas molecules, such as He, allows the realization of the thinnest physical barrier, nanoscale vacancy defects in the 2D material lattice manifest as nanopores in an atomically thin membrane. Such nanoporous atomically thin membranes (NATMs) present potential for enabling ultrahigh permeance and selectivity in a wide range of novel separation processes. Herein, the transport properties observed in NATMs are described and recent experimental progress achieved in their fabrication is summarized. Some of the challenges in NATM scale-up for practical applications are highlighted and several opportunities are identified, including the possibility of blending traditional membrane-processing approaches. Finally, a technological roadmap is presented with a contextual discussion for NATMs to progress from research to applications.
Collapse
Affiliation(s)
- Liudmyla Prozorovska
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235-1826, USA
| | - Piran R Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235-1826, USA
| |
Collapse
|
11
|
Chinappi M, Malgaretti P. Charge polarization, local electroneutrality breakdown and eddy formation due to electroosmosis in varying-section channels. SOFT MATTER 2018; 14:9083-9087. [PMID: 30418463 DOI: 10.1039/c8sm01298a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We characterize the dynamics of an electrolyte embedded in a varying-section channel under the action of a constant external electrostatic field. By means of molecular dynamics simulations we determine the stationary density, charge and velocity profiles of the electrolyte. Our results show that when the Debye length is comparable to the width of the channel bottlenecks a concentration polarization along with two eddies sets inside the channel. Interestingly, upon increasing the external field, local electroneutrality breaks down and charge polarization sets leading to the onset of net dipolar field. This novel scenario, that cannot be captured by the standard approaches based on local electroneutrality, opens the route for the realization of novel micro and nano-fluidic devices.
Collapse
Affiliation(s)
- Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, via del Politecnico 1, 00133 Roma, Italia.
| | | |
Collapse
|
12
|
Garoli D, Mosconi D, Miele E, Maccaferri N, Ardini M, Giovannini G, Dipalo M, Agnoli S, De Angelis F. Hybrid plasmonic nanostructures based on controlled integration of MoS 2 flakes on metallic nanoholes. NANOSCALE 2018; 10:17105-17111. [PMID: 30179242 DOI: 10.1039/c8nr05026k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we propose an easy and robust strategy for the versatile preparation of hybrid plasmonic nanopores by means of controlled deposition of single flakes of MoS2 directly on top of metallic holes. The device is realized on silicon nitride membranes and can be further refined by TEM or FIB milling to achieve the passing of molecules or nanometric particles through a pore. Importantly, we show that the plasmonic enhancement provided by the nanohole is strongly accumulated in the 2D nanopore, thus representing an ideal system for single-molecule sensing and sequencing in a flow-through configuration. Here, we also demonstrate that the prepared 2D material can be decorated with metallic nanoparticles that can couple their resonance with the nanopore resonance to further enhance the electromagnetic field confinement at the nanoscale level. This method can be applied to any gold nanopore with a high level of reproducibility and parallelization; hence, it can pave the way to the next generation of solid-state nanopores with plasmonic functionalities. Moreover, the controlled/ordered integration of 2D materials on plasmonic nanostructures opens a pathway towards new investigation of the following: enhanced light emission; strong coupling from plasmonic hybrid structures; hot electron generation; and sensors in general based on 2D materials.
Collapse
Affiliation(s)
- Denis Garoli
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Luan B, Zhou R. Single-File Protein Translocations through Graphene-MoS 2 Heterostructure Nanopores. J Phys Chem Lett 2018; 9:3409-3415. [PMID: 29870254 DOI: 10.1021/acs.jpclett.8b01340] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Successfully threading unfolded protein molecules through nanopores whose sizes are comparable to that of an amino acid is a prerequisite for the nanopore-based protein sequencing method that promises to be high-throughput and low-cost. While the electric driving method can be effective for a homogeneously charged DNA molecule, it fails to drive an unfolded protein through a nanopore because the net charge of a protein fragment inside of the pore (where the electric field exists) can be positive, negative, or neutral. Here we propose and demonstrate by molecular dynamics simulations protein transport through a nanopore in a quasi-two-dimensional heterostructure stacked together by graphene and molybdenum disulfide (MoS2) nanosheets. Thanks to different van der Waals interactions ( U) between a protein molecule and different 2D surfaces, it is energetically favorable for protein to progressively move from the MoS2 surface to the graphene surface (more negative U) through a nanopore in the heterostructure.
Collapse
Affiliation(s)
- Binquan Luan
- Computational Biological Center, IBM Thomas J. Watson Research , Yorktown Heights , New York 10598 , United States
| | - Ruhong Zhou
- Computational Biological Center, IBM Thomas J. Watson Research , Yorktown Heights , New York 10598 , United States
| |
Collapse
|
14
|
Haridasan N, Kannam SK, Mogurampelly S, Sathian SP. Translational mobilities of proteins in nanochannels: A coarse-grained molecular dynamics study. Phys Rev E 2018; 97:062415. [PMID: 30011556 DOI: 10.1103/physreve.97.062415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 05/18/2023]
Abstract
We investigated the translation of a protein through model nanopores using coarse-grained (CG) nonequilibrium molecular dynamics (NEMD) simulations and compared the mobilities with those obtained from previous coarse-grained equilibrium molecular dynamics model. We considered the effects of nanopore confinement and external force on the translation of streptavidin through nanopores of dimensions representative of experiments. As the nanopore radius approaches the protein hydrodynamic radius, r_{h}/r_{p}→1 (where r_{h} is the hydrodynamic radius of protein and r_{p} is the pore radius), the translation times are observed to increase by two orders of magnitude. The translation times are found to be in good agreement with the one-dimensional biased diffusion model. The results presented in this paper provide useful insights on nanopore designs intended to control the motion of biomolecules.
Collapse
Affiliation(s)
- Navaneeth Haridasan
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sridhar Kumar Kannam
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Sciences, RMIT University, Melbourne, Victoria 3001, Australia
| | - Santosh Mogurampelly
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Sarith P Sathian
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
15
|
Chinappi M, Cecconi F. Protein sequencing via nanopore based devices: a nanofluidics perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:204002. [PMID: 29595524 DOI: 10.1088/1361-648x/aababe] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Proteins perform a huge number of central functions in living organisms, thus all the new techniques allowing their precise, fast and accurate characterization at single-molecule level certainly represent a burst in proteomics with important biomedical impact. In this review, we describe the recent progresses in the developing of nanopore based devices for protein sequencing. We start with a critical analysis of the main technical requirements for nanopore protein sequencing, summarizing some ideas and methodologies that have recently appeared in the literature. In the last sections, we focus on the physical modelling of the transport phenomena occurring in nanopore based devices. The multiscale nature of the problem is discussed and, in this respect, some of the main possible computational approaches are illustrated.
Collapse
Affiliation(s)
- Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, via del Politecnico 1, 00133 Roma, Italy
| | | |
Collapse
|
16
|
Plata CA, Scholl ZN, Marszalek PE, Prados A. Relevance of the Speed and Direction of Pulling in Simple Modular Proteins. J Chem Theory Comput 2018; 14:2910-2918. [DOI: 10.1021/acs.jctc.8b00347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos A. Plata
- Física Teórica, Universidad de Sevilla, Apdo. de Correos 1065, Sevilla 41080, Spain
| | - Zackary N. Scholl
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham 27708, North Carolina, United States
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apdo. de Correos 1065, Sevilla 41080, Spain
| |
Collapse
|
17
|
Owais C, James A, John C, Dhali R, Swathi RS. Selective Permeation through One-Atom-Thick Nanoporous Carbon Membranes: Theory Reveals Excellent Design Strategies! J Phys Chem B 2018; 122:5127-5146. [DOI: 10.1021/acs.jpcb.8b01117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Cheriyacheruvakkara Owais
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Thiruvananthapuram 695551, India
| | - Anto James
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Thiruvananthapuram 695551, India
| | - Chris John
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Thiruvananthapuram 695551, India
| | - Rama Dhali
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Thiruvananthapuram 695551, India
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
18
|
Wu X, Mu F, Zhao H. Synthesis and potential applications of nanoporous graphene: A review. ACTA ACUST UNITED AC 2018. [DOI: 10.11605/j.pnrs.201802003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Asandei A, Rossini AE, Chinappi M, Park Y, Luchian T. Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14451-14459. [PMID: 29178796 DOI: 10.1021/acs.langmuir.7b03163] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanopore probing of biological polymers has the potential to achieve single-molecule sequencing at low cost, high throughput, portability, and minimal sample preparation and apparatus. In this article, we explore the possibility of discrimination between neutral amino acid residues from the primary structure of 30 amino acids long, engineered peptides, through the analysis of single-molecule ionic current fluctuations accompanying their slowed-down translocation across the wild type α-hemolysin (α-HL) nanopore, and molecular dynamics simulations. We found that the transient presence inside the α-HL of alanine or tryptophan residues from the primary sequence of engineered peptides results in distinct features of the ionic current fluctuation pattern associated with the peptide reversibly blocking the nanopore. We propose that α-HL sensitivity to the molecular exclusion at the most constricted region mediates ionic current blockade events correlated with the volumes that are occluded by at least three alanine or tryptophan residues, and provides the specificity needed to discriminate between groups of neutral amino acids. Further, we find that the pattern of current fluctuations depends on the orientation of the threaded amino acid residues, suggestive of a conformational anisotropy of the ensemble of conformations of the peptide on the restricted nanopore region, related to its relative axial orientation inside the nanopore.
Collapse
Affiliation(s)
| | - Aldo E Rossini
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome , Via A. Scarpa14, 00161 Rome, Italy
| | - Mauro Chinappi
- Department of Industrial Engineering, University of Rome Tor Vergata , Via del Politecnico 1, 00133 Rome, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia , Via Regina Elena 291, 00161 Rome, Italy
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University , Gwangju, Korea
| | | |
Collapse
|
20
|
Cecconi F, Shahzad MA, Marini Bettolo Marconi U, Vulpiani A. Frequency-control of protein translocation across an oscillating nanopore. Phys Chem Chem Phys 2017; 19:11260-11272. [DOI: 10.1039/c6cp08156h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The translocation of a lipid binding protein (LBP) is studied using a phenomenological coarse-grained computational model that simplifies both chain and pore geometry.
Collapse
Affiliation(s)
| | | | | | - Angelo Vulpiani
- Dipartimento di Fisica
- Università “Sapienza” di Roma
- Italy
- Centro Linceo Interdisciplinare “B. Segre”
- Accademia dei Lincei
| |
Collapse
|
21
|
Menais T, Mossa S, Buhot A. Polymer translocation through nano-pores in vibrating thin membranes. Sci Rep 2016; 6:38558. [PMID: 27934936 PMCID: PMC5146916 DOI: 10.1038/srep38558] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/10/2016] [Indexed: 01/31/2023] Open
Abstract
Polymer translocation is a promising strategy for the next-generation DNA sequencing technologies. The use of biological and synthetic nano-pores, however, still suffers from serious drawbacks. In particular, the width of the membrane layer can accommodate several bases at the same time, making difficult accurate sequencing applications. More recently, the use of graphene membranes has paved the way to new sequencing capabilities, with the possibility to measure transverse currents, among other advances. The reduced thickness of these new membranes poses new questions on the effect of deformability and vibrations of the membrane on the translocation process, two features which are not taken into account in the well established theoretical frameworks. Here, we make a first step forward in this direction. We report numerical simulation work on a model system simple enough to allow gathering significant insight on the effect of these features on the average translocation time, with appropriate statistical significance. We have found that the interplay between thermal fluctuations and the deformability properties of the nano-pore play a crucial role in determining the process. We conclude by discussing new directions for further work.
Collapse
Affiliation(s)
- Timothée Menais
- Univ. Grenoble Alpes, INAC-SYMMES, F-38000 Grenoble, France
- CNRS, INAC-SYMMES, F-38000 Grenoble, France
- CEA, INAC-SYMMES, F-38000 Grenoble, France
| | - Stefano Mossa
- Univ. Grenoble Alpes, INAC-SYMMES, F-38000 Grenoble, France
- CNRS, INAC-SYMMES, F-38000 Grenoble, France
- CEA, INAC-SYMMES, F-38000 Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, INAC-SYMMES, F-38000 Grenoble, France
- CNRS, INAC-SYMMES, F-38000 Grenoble, France
- CEA, INAC-SYMMES, F-38000 Grenoble, France
| |
Collapse
|
22
|
Goyal G, Lee YB, Darvish A, Ahn CW, Kim MJ. Hydrophilic and size-controlled graphene nanopores for protein detection. NANOTECHNOLOGY 2016; 27:495301. [PMID: 27827346 DOI: 10.1088/0957-4484/27/49/495301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper describes a general approach for transferring clean single-layer graphene onto silicon nitride nanopore devices and the use of the electron beam of a transmission electron microscope (TEM) to drill size-controlled nanopores in freely suspended graphene. Besides nanopore drilling, we also used the TEM to heal and completely close the unwanted secondary holes formed by electron beam damage during the drilling process. We demonstrate electron beam assisted shrinking of irregularly shaped 40-60 nm pores down to 2 nm, exhibiting an exquisite control of graphene nanopore diameter. Our fabrication workflow also rendered graphene nanopores hydrophilic, allowing easy wetting and use of the pores for studying protein translocation and protein-protein interaction with a high signal to noise ratio.
Collapse
Affiliation(s)
- Gaurav Goyal
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
23
|
Wilson J, Sloman L, He Z, Aksimentiev A. Graphene Nanopores for Protein Sequencing. ADVANCED FUNCTIONAL MATERIALS 2016; 26:4830-4838. [PMID: 27746710 PMCID: PMC5063307 DOI: 10.1002/adfm.201601272] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An inexpensive, reliable method for protein sequencing is essential to unraveling the biological mechanisms governing cellular behavior and disease. Current protein sequencing methods suffer from limitations associated with the size of proteins that can be sequenced, the time, and the cost of the sequencing procedures. Here, we report the results of all-atom molecular dynamics simulations that investigated the feasibility of using graphene nanopores for protein sequencing. We focus our study on the biologically significant phenylalanine-glycine repeat peptides (FG-nups)-parts of the nuclear pore transport machinery. Surprisingly, we found FG-nups to behave similarly to single stranded DNA: the peptides adhere to graphene and exhibit step-wise translocation when subject to a transmembrane bias or a hydrostatic pressure gradient. Reducing the peptide's charge density or increasing the peptide's hydrophobicity was found to decrease the translocation speed. Yet, unidirectional and stepwise translocation driven by a transmembrane bias was observed even when the ratio of charged to hydrophobic amino acids was as low as 1:8. The nanopore transport of the peptides was found to produce stepwise modulations of the nanopore ionic current correlated with the type of amino acids present in the nanopore, suggesting that protein sequencing by measuring ionic current blockades may be possible.
Collapse
Affiliation(s)
- James Wilson
- Department of Physics, University of Illinois Urbana-Champaign,
Urbana, IL 61801, USA
| | - Leila Sloman
- McGill University, 845 Rue Sherbrooke O, Montreal, QC H3A 0G4,
Canada
| | - Zhiren He
- Department of Physics, University of Illinois Urbana-Champaign,
Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois Urbana-Champaign,
Urbana, IL 61801, USA
| |
Collapse
|
24
|
Asandei A, Schiopu I, Chinappi M, Seo CH, Park Y, Luchian T. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13166-79. [PMID: 27159806 DOI: 10.1021/acsami.6b03697] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report on the ability to control the dynamics of a single peptide capture and passage across a voltage-biased, α-hemolysin nanopore (α-HL), under conditions that the electroosmotic force exerted on the analyte dominates the electrophoretic transport. We demonstrate that by extending outside the nanopore, the electroosmotic force is able to capture a peptide at either the lumen or vestibule entry of the nanopore, and transiently traps it inside the nanopore, against the electrophoretic force. Statistical analysis of the resolvable dwell-times of a metastable trapped peptide, as it occupies either the β-barrel or vestibule domain of the α-HL nanopore, reveals rich kinetic details regarding the direction and rates of stochastic movement of a peptide inside the nanopore. The presented approach demonstrates the ability to shuttle and study molecules along the passage pathway inside the nanopore, allows to identify the mesoscopic trajectory of a peptide exiting the nanopore through either the vestibule or β-barrel moiety, thus providing convincing proof of a molecule translocating the pore. The kinetic analysis of a peptide fluctuating between various microstates inside the nanopore, enabled a detailed picture of the free energy description of its interaction with the α-HL nanopore. When studied at the limit of vanishingly low transmembrane potentials, this provided a thermodynamic description of peptide reversible binding to and within the α-HL nanopore, under equilibrium conditions devoid of electric and electroosmotic contributions.
Collapse
Affiliation(s)
- Alina Asandei
- Department of Interdisciplinary Research, Alexandru I. Cuza University , Iasi 700506, Romania
| | - Irina Schiopu
- Department of Interdisciplinary Research, Alexandru I. Cuza University , Iasi 700506, Romania
| | - Mauro Chinappi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia , Roma, Viale Regina Elena 291, 00161 , Italy
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University , Kongju 314-701, South Korea
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteineous Materials, Chosun University , Gwangju 61452, South Korea
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University , Iasi 700506, Romania
| |
Collapse
|
25
|
Pud S, Verschueren D, Vukovic N, Plesa C, Jonsson MP, Dekker C. Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown. NANO LETTERS 2015; 15:7112-7. [PMID: 26333767 PMCID: PMC4859154 DOI: 10.1021/acs.nanolett.5b03239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We present a novel cost-efficient method for the fabrication of high-quality self-aligned plasmonic nanopores by means of an optically controlled dielectric breakdown. Excitation of a plasmonic bowtie nanoantenna on a dielectric membrane localizes the high-voltage-driven breakdown of the membrane to the hotspot of the enhanced optical field, creating a nanopore that is automatically self-aligned to the plasmonic hotspot of the bowtie. We show that the approach provides precise control over the nanopore size and that these plasmonic nanopores can be used as single molecule DNA sensors with a performance matching that of TEM-drilled nanopores. The principle of optically controlled breakdown can also be used to fabricate nonplasmonic nanopores at a controlled position. Our novel fabrication process guarantees alignment of the nanopore with the optical hotspot of the nanoantenna, thus ensuring that pore-translocating biomolecules interact with the concentrated optical field that can be used for detection and manipulation of analytes.
Collapse
Affiliation(s)
| | | | - Nikola Vukovic
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Calin Plesa
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
26
|
Chinappi M, Luchian T, Cecconi F. Nanopore tweezers: voltage-controlled trapping and releasing of analytes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032714. [PMID: 26465505 DOI: 10.1103/physreve.92.032714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 05/28/2023]
Abstract
Several devices for single-molecule detection and analysis employ biological and artificial nanopores as core elements. The performance of such devises strongly depends on the amount of time the analytes spend into the pore. This residence time needs to be long enough to allow the recording of a high signal-to-noise ratio analyte-induced blockade. We propose a simple approach, dubbed nanopore tweezing, for enhancing the trapping time of molecules inside the pore via a proper tuning of the applied voltage. This method requires the creation of a strong dipole that can be generated by adding a positive and a negative tail at the two ends of the molecules to be analyzed. Capture rate is shown to increase with the applied voltage while escape rate decreases. In this paper we rationalize the essential ingredients needed to control the residence time and provide a proof of principle based on atomistic simulations.
Collapse
Affiliation(s)
- Mauro Chinappi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Via Regina Elena 291, 00161 Roma, Italia
| | - Tudor Luchian
- Department of Physics, Laboratory of Molecular Biophysics and Medical Physics, Alexandru I. Cuza University, Iasi 700506, Romania
| | - Fabio Cecconi
- CNR-Istituto dei Sistemi Complessi UoS "Sapienza," Via dei Taurini 19, 00185 Roma (Italy)
| |
Collapse
|
27
|
Di Marino D, Bonome EL, Tramontano A, Chinappi M. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore. J Phys Chem Lett 2015; 6:2963-2968. [PMID: 26267189 DOI: 10.1021/acs.jpclett.5b01077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.
Collapse
Affiliation(s)
- Daniele Di Marino
- †Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro, 5, 00185 Rome, Italy
| | - Emma Letizia Bonome
- ‡Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy
| | - Anna Tramontano
- †Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro, 5, 00185 Rome, Italy
- §Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, 00161 Rome, Italy
| | - Mauro Chinappi
- ∥Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Via Regina Elena 291, 00161, Roma, Italia
| |
Collapse
|
28
|
Asandei A, Chinappi M, Kang HK, Seo CH, Mereuta L, Park Y, Luchian T. Acidity-Mediated, Electrostatic Tuning of Asymmetrically Charged Peptides Interactions with Protein Nanopores. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16706-16714. [PMID: 26144534 DOI: 10.1021/acsami.5b04406] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Despite success in probing chemical reactions and dynamics of macromolecules on submillisecond time and nanometer length scales, a major impasse faced by nanopore technology is the need to cheaply and controllably modulate macromolecule capture and trafficking across the nanopore. We demonstrate herein that tunable charge separation engineered at the both ends of a macromolecule very efficiently modulates the dynamics of macromolecules capture and traffic through a nanometer-size pore. In the proof-of-principle approach, we employed a 36 amino acids long peptide containing at the N- and C-termini uniform patches of glutamic acids and arginines, flanking a central segment of asparagines, and we studied its capture by the α-hemolysin (α-HL) and the mean residence time inside the pore in the presence of a pH gradient across the protein. We propose a solution to effectively control the dynamics of peptide interaction with the nanopore, with both association and dissociation reaction rates of peptide-α-HL interactions spanning orders of magnitude depending upon solution acidity on the peptide addition side and the transmembrane electric potential, while preserving the amplitude of the blockade current signature.
Collapse
Affiliation(s)
- Alina Asandei
- †Department of Interdisciplinary Research, Alexandru I. Cuza University, Iasi, Romania
| | - Mauro Chinappi
- ‡Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Hee-Kyoung Kang
- §Department of Biomedical Science and Research Center for Proteineous Materials, Chosun University, Gwangju, South Korea
| | - Chang Ho Seo
- ∥Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Loredana Mereuta
- ⊥Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Yoonkyung Park
- §Department of Biomedical Science and Research Center for Proteineous Materials, Chosun University, Gwangju, South Korea
| | - Tudor Luchian
- ⊥Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| |
Collapse
|