1
|
Cheng H, Zhang Z, Cheng Y, Guan J. Potential of hyperspectral imaging for nondestructive determination of α-farnesene and conjugated trienol content in 'Yali' pear. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124688. [PMID: 38941754 DOI: 10.1016/j.saa.2024.124688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
The sesquiterpene α-farnesene and its corresponding oxidation products, namely conjugated trienols (CTols) is well known to be correlated with the development of superficial scald, a typical physiological disorder after a long term of cold storage in pear fruit. In this work, hyperspectral imaging (HSI) technology was used for nondestructive predicting of α-farnesene and CTols [CT258, CT281 and CT(281-290)] content in 'Yali' pear. In order to obtain the best performance of calibration model and simplify the calibration model further, various preprocessing methods together with their combinations and different wavelength selection algorithms, including successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS) and uninformative variable elimination (UVE), were investigated and compared based on linear partial least square regression (PLSR) and nonlinear least square support vector machine (LS-SVM) models, respectively. In conclusion, compared to the PLSR models, the results of LS-SVM models based on original and preprocessing methods performed better for the prediction of α-farnesene and CTols, while the performance of LS-SVM models based on the selected characteristic wavelengths were worse. For α-farnesene, the best result was obtained by LS-SVM model based on MSC-FD pretreatment with the RPD value of 2.6, Rp = 0.925 and RMSEP = 4.387 nmol cm-2. And for CTols, CT281 performed better compared with CT258 and CT(281-290), achieving the result with RPD = 2.4, Rp = 0.913 and RMSEP = 2.734 nmol cm-2 based on LS-SVM model combined with SD pretreatment. The overall results illustrated HSI technology could be used for rapid and nondestructive prediction of α-farnesene and CTols in 'Yali' pear, which would be helpful for supporting postharvest decision systems.
Collapse
Affiliation(s)
- Hong Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, Hebei, China; Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, Hebei, China
| | - Zishen Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, Hebei, China; Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, Hebei, China; College of Horticulture, Xinjiang Agruicultural University, Urumqi 830000, Xinjiang, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, Hebei, China; Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, Hebei, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, Hebei, China; Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
2
|
Boehm F, Edge R, Truscott TG. Anti- and pro-oxidative mechanisms comparing the macular carotenoids zeaxanthin and lutein with other dietary carotenoids - a singlet oxygen, free-radical in vitro and ex vivo study. Photochem Photobiol Sci 2020; 19:1001-1009. [PMID: 32589182 DOI: 10.1039/d0pp00120a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions of dietary carotenoids, and particularly the xanthophylls in the macula, with singlet oxygen and three different oxy-radicals, (hydroxyl radical, nitrogen dioxide and the superoxide radical anion) are compared using pulsed laser and γ-techniques. The results give possible molecular mechanisms for the switch from anti-oxidant (protection) by carotenoids to pro-oxidant (damage) by carotenoids. The participation of oxygen in radical mechanisms in the presence of different carotenoids is compared for the different radicals. It is shown that the mechanistic role of oxygen differs very significantly for anti-/pro-oxidation by hydroxyl radicals when compared to nitrogen dioxide. Lutein was found to be an extremely good cell protector against hydroxyl radicals at all oxygen concentrations, including under physiological conditions.
Collapse
Affiliation(s)
- Fritz Boehm
- Photobiology Research, Internationales Handelszentrum (IHZ), Friedrichstraße 95, 10117, Berlin, Germany
| | - Ruth Edge
- Dalton Cumbrian Facility, Westlakes Science Park, The University of Manchester, CA24 3HA, Cumbria, UK
| | - T George Truscott
- School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK.
| |
Collapse
|
3
|
Black HS, Boehm F, Edge R, Truscott TG. The Benefits and Risks of Certain Dietary Carotenoids that Exhibit both Anti- and Pro-Oxidative Mechanisms-A Comprehensive Review. Antioxidants (Basel) 2020; 9:E264. [PMID: 32210038 PMCID: PMC7139534 DOI: 10.3390/antiox9030264] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/04/2023] Open
Abstract
Carotenoid pigments, particularly β-carotene and lycopene, are consumed in human foodstuffs and play a vital role in maintaining health. β-carotene is known to quench singlet oxygen and can have strong antioxidant activity. As such, it was proposed that β-carotene might reduce the risk of cancer. Epidemiological studies found inverse relationships between cancer risk and β-carotene intake or blood levels. However, clinical trials failed to support those findings and β-carotene supplementation actually increased lung cancer incidence in male smokers. Early experimental animal studies found dietary β-carotene inhibited UV-induced skin cancers. Later studies found that β-carotene supplementation exacerbated UV-carcinogenic expression. The discrepancies of these results were related to the type of diet the animals consumed. Lycopene has been associated with reduced risk of lethal stage prostate cancer. Other carotenoids, e.g., lutein and zeaxanthin, play a vital role in visual health. Numerous studies of molecular mechanisms to explain the carotenoids' mode of action have centered on singlet oxygen, as well as radical reactions. In cellular systems, singlet oxygen quenching by carotenoids has been reported but is more complex than in organic solvents. In dietary β-carotene supplement studies, damaging pro-oxidant reactivity can also arise. Reasons for this switch are likely due to the properties of the carotenoid radicals themselves. Understanding singlet oxygen reactions and the anti-/pro-oxidant roles of carotenoids are of importance to photosynthesis, vision and cancer.
Collapse
Affiliation(s)
- Homer S. Black
- Department of Dermatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fritz Boehm
- Photobiology Research, Internationales Handelszentrum (IHZ), Friedrichstraße 95, 10117 Berlin, Germany;
| | - Ruth Edge
- Dalton Cumbrian Facility, Westlakes Science Park, The University of Manchester, Cumbria CA24 3HA, UK
| | - T. George Truscott
- School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK;
| |
Collapse
|
4
|
Skibsted LH. Anthocyanidins regenerating xanthophylls: a quantum mechanical approach to eye health. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Edge R, Truscott TG. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids-A Review. Antioxidants (Basel) 2018; 7:antiox7010005. [PMID: 29301252 PMCID: PMC5789315 DOI: 10.3390/antiox7010005] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/11/2017] [Accepted: 12/29/2017] [Indexed: 12/29/2022] Open
Abstract
We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration.
Collapse
Affiliation(s)
- Ruth Edge
- Dalton Cumbrian Facility, The University of Manchester, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HA, UK.
| | - T George Truscott
- School of Chemical and Physical Sciences, Lennard-Jones Building, Keele University, Staffordshire ST5 5BG, UK.
| |
Collapse
|
6
|
Exploring the reactivity of retinol radical cation toward organic and biological molecules: A laser flash photolysis study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:33-39. [PMID: 28390257 DOI: 10.1016/j.jphotobiol.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/12/2017] [Indexed: 11/20/2022]
Abstract
Vitamin A (retinol) and various natural retinoids are essential for life. Under oxidative conditions, vitamin A radical cation (RET+) can be formed. Many deleterious effects were reported about the formation of carotenoid radical cations in biological environments, on the other hand, little is known about the consequences of the RET+ formation in these environments. Therefore, it is important to explore the reactivity of RET+ toward various biological substrates. Here, we employed nanosecond laser flash photolysis (LFP) to generate RET+ (λmax=580nm in methanol) and examine its reactivity toward a wide range of biological molecules including amino acids, vitamins, carotenoids, naturally-occurring phenols, neurotransmitters such as catecholamines, wide range of phenol derivatives and some selected electron-donors. The results show that the reactivity of RET+ toward various substrates is strongly dependent on the polarity of solvent. In addition, RET+ is able to oxidize amino acids, which subsequently can lead to protein damage. However, the presence of vitamins (vitamins E and C), carotenoids and naturally-occurring phenols (e.g. resveratrol, vanillin, dopamine hydrochloride and l-Dopa) can inhibit the damaging effect of retinol+ by reducing it back to retinol. Vitamin E and carotenoids are the most efficient quenchers for the RET+ (diffusion-controlled reactions). Importantly, our results clearly indicate that the reactivity of RET+ is as strong as that of the powerful trichloromethylperoxyl radical (CCl3O2). Thereby, formation of RET+ in biological media is expected to induce bio-damage.
Collapse
|
7
|
Chang HT, Cheng H, Han RM, Wang P, Zhang JP, Skibsted LH. Regeneration of β-Carotene from Radical Cation by Eugenol, Isoeugenol, and Clove Oil in the Marcus Theory Inverted Region for Electron Transfer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:908-912. [PMID: 28061030 DOI: 10.1021/acs.jafc.6b04708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The rate of regeneration of β-carotene by eugenol from the β-carotene radical cation, an initial bleaching product of β-carotene, was found by laser flash photolysis and transient absorption spectroscopy to be close to the diffusion limit in chloroform/methanol (9:1, v/v), with a second-order rate constant (k2) of 4.3 × 109 L mol-1 s-1 at 23 °C. Isoeugenol, more reducing with a standard reduction potential of 100 mV lower than eugenol, was slower, with k2 = 7.2 × 108 L mol-1 s-1. Regeneration of β-carotene following photobleaching was found 50% more efficient by eugenol, indicating that, for the more reducing isoeugenol, the driving force exceeds the reorganization energy for electron transfer significantly in the Marcus theory inverted region. For eugenol/isoeugenol mixtures and clove oil, kinetic control by the faster eugenol determines the regeneration, with a thermodynamic backup of reduction equivalent through eugenol regeneration by the more reducing isoeugenol for the mixture. Clove oil, accordingly, is a potential protector of provitamin A for use in red palm oils.
Collapse
Affiliation(s)
- Hui-Ting Chang
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Hong Cheng
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Rui-Min Han
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Peng Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Leif H Skibsted
- Department of Food Science, University of Copenhagen , Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
8
|
Chang HT, Cheng H, Han RM, Zhang JP, Skibsted LH. Binding to Bovine Serum Albumin Protects β-Carotene against Oxidative Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5951-5957. [PMID: 27399620 DOI: 10.1021/acs.jafc.6b02436] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Binding to bovine serum albumin (BSA) was found to protect β-carotene (β-Car) dissolved in air-saturated phosphate buffer solution/tetrahydrofuran (9:1, v/v) efficiently against photobleaching resulting from laser flash excitation at 532 nm. From dependence of the relative photobleaching yield upon the BSA concentration, an association constant of Ka = 4.67 × 10(5) L mol(-1) for β-Car binding to BSA was determined at 25 °C. Transient absorption spectroscopy confirmed less bleaching of β-Car on the microsecond time scale in the presence of BSA, while kinetics of triplet-state β-Car was unaffected by the presence of oxygen. The protection of β-Car against this type of reaction seems accordingly to depend upon dissipation of excitation energy from an excited state into the protein matrix. Static quenching of BSA fluorescence by β-Car had a Stern-Volmer constant of Ksv = 2.67 × 10(4) L mol(-1), with ΔH = 17 kJ mol(-1) and ΔS = 142 J mol(-1) K(-1) at 25 °C. Quenching of tryptophan (Trp) fluorescence by β-Car suggests involvement of Trp in binding of β-Car to BSA through hydrophobic interaction, while the lower value for the Stern-Volmer constant Ksv compared to the binding constant, Ka, may indicate involvement of β-Car aggregates. Bound β-Car increased the random coil fraction of BSA at the expense of α-helix, as shown by circular dichroism, affecting the β-Car configuration, as shown by Raman spectroscopy.
Collapse
Affiliation(s)
- Hui-Ting Chang
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Hong Cheng
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Rui-Min Han
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | - Leif H Skibsted
- Food Chemistry, Department of Food Science, University of Copenhagen , Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|