1
|
Hetzke T, Vogel M, Halbritter ALJ, Saha S, Suess B, Sigurdsson ST, Prisner TF. Simultaneous Localization of Two High Affinity Divalent Metal Ion Binding Sites in the Tetracycline RNA Aptamer with Mn 2+-Based Pulsed Dipolar EPR Spectroscopy. J Phys Chem Lett 2023; 14:11421-11428. [PMID: 38084602 DOI: 10.1021/acs.jpclett.3c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Mg2+ ions play an essential part in stabilizing the tertiary structure of nucleic acids. While the importance of these ions is well documented, their localization and elucidation of their role in the structure and dynamics of nucleic acids are often challenging. In this work, pulsed electron-electron double resonance spectroscopy (PELDOR, also known as DEER) was used to localize two high affinity divalent metal ion binding sites in the tetracycline RNA aptamer with high accuracy. For this purpose, the aptamer was labeled at different positions with a semirigid nitroxide spin label and diamagnetic Mg2+ was replaced with paramagnetic Mn2+, which did not alter the folding process or ligand binding. Out of the several divalent metal ion binding sites that are known from the crystal structure, two binding sites with high affinity were detected: one that is located at the ligand binding center and another at the J1/2 junction of the RNA.
Collapse
Affiliation(s)
- Thilo Hetzke
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Marc Vogel
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | | | - Subham Saha
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Beatrix Suess
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Lovyagina ER, Luneva OG, Loktyushkin AV, Semin BK. Effect of lanthanides on oxidation of Mn 2+ cations via a high-affinity Mn-binding site in photosystem II membranes. J Inorg Biochem 2023; 244:112237. [PMID: 37105009 DOI: 10.1016/j.jinorgbio.2023.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Lanthanide cations (La3+ and Tb3+) bind to the Ca-binding site of the oxygen-evolving complex in Ca-depleted PSII membranes and irreversibly inhibit the oxygen evolution. Оn the other hand, EPR measurement of Mn2+ concentration in buffer revealed that lanthanide cations inhibit the light-dependent oxidation of Mn2+ cations via the high-affinity Mn-binding site in Mn-depleted PSII membranes, which suggests that they bind to and inhibit the high-affinity Mn-binding site of the oxygen-evolving complex. The inhibition is irreversible, bound Ln3+ cation could not be washed out from the sample. Calcium ion inhibits oxidation of Mn2+ (5 μM) at very high concentration (tens mM) and the inhibition is reversible. In this work we measured the reduction rate of exogenic electron acceptor 2,6-dichlorophenolindophenol during the oxidation of Mn2+ cations in the Ca-depleted PSII and in the Ca-depleted PSII treated with lanthanides after extraction of Mn cluster from these preparations. We found that irreversible binding of the lanthanide cation to the Ca-binding site in the Ca-depleted PSII membranes leads to a partial inhibition of the high-affinity Mn-binding site.
Collapse
Affiliation(s)
- E R Lovyagina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - O G Luneva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - A V Loktyushkin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - B K Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
3
|
Mino H, Asada M. Location of two Mn 2+ affinity sites in photosystem II detected by pulsed electron-electron double resonance. PHOTOSYNTHESIS RESEARCH 2022; 152:289-295. [PMID: 34826026 DOI: 10.1007/s11120-021-00885-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
In this study, we identified two Mn2+ sites in apo-Photosystem II (PSII) using the pulsed electron-electron double resonance (PELDOR). A Mn2+ ion was bound to apo-PSII on the deactivation of the oxygen-evolving complex. The electron-electron magnetic dipole interaction of the Mn2+ to YD· was estimated to be 2.4 MHz. The site was assigned at the position between His332 and Glu189 in the D1 polypeptide, which is close to the Mn1 site in mature PS II. Using recent structures observed under electron microscopes (EM), the location of the Mn2+ site on photoactivation was reevaluated. The position between Asp170 and Glu189 in the D1 polypeptide is a good candidate for the initial high-affinity site for photoactivation. Based on a comparison with the PELDOR results, the two EM structures were evaluated.
Collapse
Affiliation(s)
- Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan.
| | - Mizue Asada
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8602, Japan
- Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
4
|
Inagaki N. Processing of D1 Protein: A Mysterious Process Carried Out in Thylakoid Lumen. Int J Mol Sci 2022; 23:2520. [PMID: 35269663 PMCID: PMC8909930 DOI: 10.3390/ijms23052520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In oxygenic photosynthetic organisms, D1 protein, a core subunit of photosystem II (PSII), displays a rapid turnover in the light, in which D1 proteins are distinctively damaged and immediately removed from the PSII. In parallel, as a repair process, D1 proteins are synthesized and simultaneously assembled into the PSII. On this flow, the D1 protein is synthesized as a precursor with a carboxyl-terminal extension, and the D1 processing is defined as a step for proteolytic removal of the extension by a specific protease, CtpA. The D1 processing plays a crucial role in appearance of water-oxidizing capacity of PSII, because the main chain carboxyl group at carboxyl-terminus of the D1 protein, exposed by the D1 processing, ligates a manganese and a calcium atom in the Mn4CaO5-cluster, a special equipment for water-oxidizing chemistry of PSII. This review focuses on the D1 processing and discusses it from four angles: (i) Discovery of the D1 processing and recognition of its importance: (ii) Enzyme involved in the D1 processing: (iii) Efforts for understanding significance of the D1 processing: (iv) Remaining mysteries in the D1 processing. Through the review, I summarize the current status of our knowledge on and around the D1 processing.
Collapse
Affiliation(s)
- Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| |
Collapse
|
5
|
Bigness A, Vaddypally S, Zdilla MJ, Mendoza-Cortes JL. Ubiquity of cubanes in bioinorganic relevant compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Sato A, Nakano Y, Nakamura S, Noguchi T. Rapid-Scan Time-Resolved ATR-FTIR Study on the Photoassembly of the Water-Oxidizing Mn4CaO5 Cluster in Photosystem II. J Phys Chem B 2021; 125:4031-4045. [DOI: 10.1021/acs.jpcb.1c01624] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akihiko Sato
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuki Nakano
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shin Nakamura
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
7
|
Nakamura S, Capone M, Mattioli G, Guidoni L. Early-stage formation of (hydr)oxo bridges in transition-metal catalysts for photosynthetic processes. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02227f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ab initio simulations have been used to assess reaction pathways for the formation of M–(hydr)oxo–M (M = Co, Mn, Ni) bridges from M(ii) aqueous solutions, as early-stage building blocks of transition-metal catalysts for oxygen evolution.
Collapse
Affiliation(s)
- Shin Nakamura
- Department of Biochemical Sciences “A. Rossi Fanelli”
- Sapienza University of Rome
- Rome
- Italy
| | - Matteo Capone
- Department of physical and chemical science
- Università dell'Aquila
- L'Aquila
- Italy
| | - Giuseppe Mattioli
- Istituto di Struttura della Materia del CNR (ISM-CNR)
- I-00015 Monterotondo Scalo
- Italy
| | - Leonardo Guidoni
- Department of physical and chemical science
- Università dell'Aquila
- L'Aquila
- Italy
| |
Collapse
|
8
|
Effective binding of Tb 3+ and La 3+ cations on the donor side of Mn-depleted photosystem II. J Biol Inorg Chem 2020; 26:1-11. [PMID: 33146770 DOI: 10.1007/s00775-020-01832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
The interaction of Tb3+ and La3+ cations with different photosystem II (PSII) membranes (intact PSII, Ca-depleted PSII (PSII[-Ca]) and Mn-depleted PSII (PSII[-Mn]) membranes) was studied. Although both lanthanide cations (Ln3+) interact only with Ca2+-binding site of oxygen-evolving complex (OEC) in PSII and PSII(-Ca) membranes, we found that in PSII(-Mn) membranes both Ln3+ ions tightly bind to another site localized on the oxidizing side of PSII. Binding of Ln3+ cations to this site is not protected by Ca2+ and is accompanied by very effective inhibition of Mn2+ oxidation at the high-affinity (HA) Mn-binding site ([Mn2+ + H2O2] couple was used as a donor of electrons). The values of the constant for inhibition of electron transport Ki are equal to 2.10 ± 0.03 µM for Tb3+ and 8.3 ± 0.4 µM for La3+, whereas OEC inhibition constant in the native PSII membranes is 323 ± 7 µM for Tb3+. The value of Ki for Tb3+ corresponds to Ki for Mn2+ cations in the reaction of diphenylcarbazide oxidation via HA site (1.5 µM) presented in the literature. Our results suggest that Ln3+ cations bind to the HA Mn-binding site in PSII(-Mn) membranes like Mn2+ or Fe2+ cations. Taking into account the fact that Mn2+ and Fe2+ cations bind to the HA site as trivalent cations after light-induced oxidation and the fact that Mn cation bound to the HA site (Mn4) is also in trivalent state, we can suggest that valency may be important for the interaction of Ln3+ with the HA site.
Collapse
|
9
|
Assessment of the manganese cluster's oxidation state via photoactivation of photosystem II microcrystals. Proc Natl Acad Sci U S A 2019; 117:141-145. [PMID: 31848244 DOI: 10.1073/pnas.1915879117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Knowledge of the manganese oxidation states of the oxygen-evolving Mn4CaO5 cluster in photosystem II (PSII) is crucial toward understanding the mechanism of biological water oxidation. There is a 4 decade long debate on this topic that historically originates from the observation of a multiline electron paramagnetic resonance (EPR) signal with effective total spin of S = 1/2 in the singly oxidized S2 state of this cluster. This signal implies an overall oxidation state of either Mn(III)3Mn(IV) or Mn(III)Mn(IV)3 for the S2 state. These 2 competing assignments are commonly known as "low oxidation (LO)" and "high oxidation (HO)" models of the Mn4CaO5 cluster. Recent advanced EPR and Mn K-edge X-ray spectroscopy studies converge upon the HO model. However, doubts about these assignments have been voiced, fueled especially by studies counting the number of flash-driven electron removals required for the assembly of an active Mn4CaO5 cluster starting from Mn(II) and Mn-free PSII. This process, known as photoactivation, appeared to support the LO model since the first oxygen is reported to evolve already after 7 flashes. In this study, we improved the quantum yield and sensitivity of the photoactivation experiment by employing PSII microcrystals that retained all protein subunits after complete manganese removal and by oxygen detection via a custom built thin-layer cell connected to a membrane inlet mass spectrometer. We demonstrate that 9 flashes by a nanosecond laser are required for the production of the first oxygen, which proves that the HO model provides the correct description of the Mn4CaO5 cluster's oxidation states.
Collapse
|
10
|
Photosystem II oxygen-evolving complex photoassembly displays an inverse H/D solvent isotope effect under chloride-limiting conditions. Proc Natl Acad Sci U S A 2019; 116:18917-18922. [PMID: 31484762 PMCID: PMC6754581 DOI: 10.1073/pnas.1910231116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Metal clusters play important roles in a wide variety of proteins. In cyanobacteria, algae, and plants, photosystem II uses light energy to oxidize water and release O2 at an active site that contains 1 calcium and 4 manganese atoms. This cluster must be built within the protein environment through a process known as photoassembly. Through experiments and simulations, we found that the efficiency of photoassembly was highly dependent on protons and chloride. Surprisingly, when the solvent was switched from H2O to deuterated water, D2O, the yield of photoassembly was higher. These results provide insights into the stepwise mechanism of photoassembly that can inform synthesis and repair strategies being developed for artificial photosynthesis technologies. Photosystem II (PSII) performs the solar-driven oxidation of water used to fuel oxygenic photosynthesis. The active site of water oxidation is the oxygen-evolving complex (OEC), a Mn4CaO5 cluster. PSII requires degradation of key subunits and reassembly of the OEC as frequently as every 20 to 40 min. The metals for the OEC are assembled within the PSII protein environment via a series of binding events and photochemically induced oxidation events, but the full mechanism is unknown. A role of proton release in this mechanism is suggested here by the observation that the yield of in vitro OEC photoassembly is higher in deuterated water, D2O, compared with H2O when chloride is limiting. In kinetic studies, OEC photoassembly shows a significant lag phase in H2O at limiting chloride concentrations with an apparent H/D solvent isotope effect of 0.14 ± 0.05. The growth phase of OEC photoassembly shows an H/D solvent isotope effect of 1.5 ± 0.2. We analyzed the protonation states of the OEC protein environment using classical Multiconformer Continuum Electrostatics. Combining experiments and simulations leads to a model in which protons are lost from amino acid that will serve as OEC ligands as metals are bound. Chloride and D2O increase the proton affinities of key amino acid residues. These residues tune the binding affinity of Mn2+/3+ and facilitate the deprotonation of water to form a proposed μ-hydroxo bridged Mn2+Mn3+ intermediate.
Collapse
|
11
|
Dal Farra MG, Richert S, Martin C, Larminie C, Gobbo M, Bergantino E, Timmel CR, Bowen AM, Di Valentin M. Light-Induced Pulsed EPR Dipolar Spectroscopy on a Paradigmatic Hemeprotein. Chemphyschem 2019; 20:931-935. [PMID: 30817078 PMCID: PMC6618045 DOI: 10.1002/cphc.201900139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/27/2019] [Indexed: 01/12/2023]
Abstract
Light-induced pulsed EPR dipolar spectroscopic methods allow the determination of nanometer distances between paramagnetic sites. Here we employ orthogonal spin labels, a chromophore triplet state and a stable radical, to carry out distance measurements in singly nitroxide-labeled human neuroglobin. We demonstrate that Zn-substitution of neuroglobin, to populate the Zn(II) protoporphyrin IX triplet state, makes it possible to perform light-induced pulsed dipolar experiments on hemeproteins, extending the use of light-induced dipolar spectroscopy to this large class of metalloproteins. The versatility of the method is ensured by the employment of different techniques: relaxation-induced dipolar modulation enhancement (RIDME) is applied for the first time to the photoexcited triplet state. In addition, an alternative pulse scheme for laser-induced magnetic dipole (LaserIMD) spectroscopy, based on the refocused-echo detection sequence, is proposed for accurate zero-time determination and reliable distance analysis.
Collapse
Affiliation(s)
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
- current affiliation: Institute of Physical ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Caterina Martin
- Department of BiologyUniversity of Padovaviale G. Colombo 335121PadovaItaly
- current affiliation: Groningen Biomolecular Science and Biotechnology InstituteUniversity of Groningen9700 ABGroningenThe Netherlands
| | - Charles Larminie
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Marina Gobbo
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| | | | - Christiane R. Timmel
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Alice M. Bowen
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Marilena Di Valentin
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
12
|
Nakamura S, Noguchi T. Initial Mn2+ binding site in photoassembly of the water-oxidizing Mn4CaO5 cluster in photosystem II as studied by quantum mechanics/molecular mechanics calculations. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Nagashima H, Asada M, Mino H. Magnetic structure of manganese cluster in photosystem II investigated by electron paramagnetic resonance. Biophys Physicobiol 2018; 15:45-50. [PMID: 29607279 PMCID: PMC5873039 DOI: 10.2142/biophysico.15.0_45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 12/01/2022] Open
Abstract
The electronic structure of manganese (Mn) cluster in photosystem II was investigated by electron paramagnetic resonance (EPR) spectroscopy. In order to determine the spin density distribution in magnetically coupled Mn in the S2 state Mn cluster, pulsed electron–electron double resonance (PELDOR) measurement was performed. The local environment of the Mn cluster was investigated by electron-nuclear double resonance (ENDOR). Using spin projections determined by PELDOR, ENDOR signals were assigned to the water molecules ligated to the Mn cluster. The location of a high-affinity Mn2+ site in apo-photosystem II, which is the initial site of photoactivation of the Mn cluster, was determined by PELDOR.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Mizue Asada
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Hiroyuki Mino
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
14
|
Meyer A, Jassoy JJ, Spicher S, Berndhäuser A, Schiemann O. Performance of PELDOR, RIDME, SIFTER, and DQC in measuring distances in trityl based bi- and triradicals: exchange coupling, pseudosecular coupling and multi-spin effects. Phys Chem Chem Phys 2018; 20:13858-13869. [DOI: 10.1039/c8cp01276h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The performance of pulsed EPR methods for distance measurements is evaluated on three different trityl model systems.
Collapse
Affiliation(s)
- Andreas Meyer
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Jean Jacques Jassoy
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Sebastian Spicher
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Andreas Berndhäuser
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| |
Collapse
|
15
|
Ozeki K, Tsukuno H, Nagashima H, Hisatomi O, Mino H. Dimeric Structure of the Blue Light Sensor Protein Photozipper in the Active State. Biochemistry 2017; 57:494-497. [DOI: 10.1021/acs.biochem.7b01045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kohei Ozeki
- Division
of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cho, Nagoya 464-8602, Japan
| | - Hiroyuki Tsukuno
- Division
of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cho, Nagoya 464-8602, Japan
| | - Hiroki Nagashima
- Division
of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cho, Nagoya 464-8602, Japan
| | - Osamu Hisatomi
- Department
of Earth and Space Science, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Hiroyuki Mino
- Division
of Material Science, Graduate School of Science, Nagoya University, Chikusa-ku, Furo-cho, Nagoya 464-8602, Japan
| |
Collapse
|
16
|
Zhang M, Bommer M, Chatterjee R, Hussein R, Yano J, Dau H, Kern J, Dobbek H, Zouni A. Structural insights into the light-driven auto-assembly process of the water-oxidizing Mn 4CaO 5-cluster in photosystem II. eLife 2017; 6. [PMID: 28718766 PMCID: PMC5542773 DOI: 10.7554/elife.26933] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
In plants, algae and cyanobacteria, Photosystem II (PSII) catalyzes the light-driven splitting of water at a protein-bound Mn4CaO5-cluster, the water-oxidizing complex (WOC). In the photosynthetic organisms, the light-driven formation of the WOC from dissolved metal ions is a key process because it is essential in both initial activation and continuous repair of PSII. Structural information is required for understanding of this chaperone-free metal-cluster assembly. For the first time, we obtained a structure of PSII from Thermosynechococcus elongatus without the Mn4CaO5-cluster. Surprisingly, cluster-removal leaves the positions of all coordinating amino acid residues and most nearby water molecules largely unaffected, resulting in a pre-organized ligand shell for kinetically competent and error-free photo-assembly of the Mn4CaO5-cluster. First experiments initiating (i) partial disassembly and (ii) partial re-assembly after complete depletion of the Mn4CaO5-cluster agree with a specific bi-manganese cluster, likely a di-µ-oxo bridged pair of Mn(III) ions, as an assembly intermediate. DOI:http://dx.doi.org/10.7554/eLife.26933.001
Collapse
Affiliation(s)
- Miao Zhang
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Bommer
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Rana Hussein
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Holger Dau
- Freie Universität Berlin, Berlin, Germany
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Holger Dobbek
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
17
|
Meyer A, Schiemann O. PELDOR and RIDME Measurements on a High-Spin Manganese(II) Bisnitroxide Model Complex. J Phys Chem A 2016; 120:3463-72. [DOI: 10.1021/acs.jpca.6b00716] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas Meyer
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstr. 12, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstr. 12, Bonn, Germany
| |
Collapse
|
18
|
Bao H, Burnap RL. Photoactivation: The Light-Driven Assembly of the Water Oxidation Complex of Photosystem II. FRONTIERS IN PLANT SCIENCE 2016; 7:578. [PMID: 27200051 PMCID: PMC4853684 DOI: 10.3389/fpls.2016.00578] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/14/2016] [Indexed: 05/10/2023]
Abstract
Photosynthetic water oxidation is catalyzed by the Mn4CaO5 cluster of photosystem II. The assembly of the Mn4O5Ca requires light and involves a sequential process called photoactivation. This process harnesses the charge-separation of the photochemical reaction center and the coordination environment provided by the amino acid side chains of the protein to oxidize and organize the incoming manganese ions to form the oxo-bridged metal cluster capable of H2O-oxidation. Although most aspects of this assembly process remain poorly understood, recent advances in the elucidation of the crystal structure of the fully assembled cyanobacterial PSII complex help in the interpretation of the rich history of experiments designed to understand this process. Moreover, recent insights on the structure and stability of the constituent ions of the Mn4CaO5 cluster may guide future experiments. Here we consider the literature and suggest possible models of assembly including one involving single Mn(2+) oxidation site for all Mn but requiring ion relocation.
Collapse
Affiliation(s)
| | - Robert L. Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
19
|
Cardona T. Reconstructing the Origin of Oxygenic Photosynthesis: Do Assembly and Photoactivation Recapitulate Evolution? FRONTIERS IN PLANT SCIENCE 2016; 7:257. [PMID: 26973693 PMCID: PMC4773611 DOI: 10.3389/fpls.2016.00257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/16/2016] [Indexed: 05/21/2023]
Abstract
Due to the great abundance of genomes and protein structures that today span a broad diversity of organisms, now more than ever before, it is possible to reconstruct the molecular evolution of protein complexes at an incredible level of detail. Here, I recount the story of oxygenic photosynthesis or how an ancestral reaction center was transformed into a sophisticated photochemical machine capable of water oxidation. First, I review the evolution of all reaction center proteins in order to highlight that Photosystem II and Photosystem I, today only found in the phylum Cyanobacteria, branched out very early in the history of photosynthesis. Therefore, it is very unlikely that they were acquired via horizontal gene transfer from any of the described phyla of anoxygenic phototrophic bacteria. Second, I present a new evolutionary scenario for the origin of the CP43 and CP47 antenna of Photosystem II. I suggest that the antenna proteins originated from the remodeling of an entire Type I reaction center protein and not from the partial gene duplication of a Type I reaction center gene. Third, I highlight how Photosystem II and Photosystem I reaction center proteins interact with small peripheral subunits in remarkably similar patterns and hypothesize that some of this complexity may be traced back to the most ancestral reaction center. Fourth, I outline the sequence of events that led to the origin of the Mn4CaO5 cluster and show that the most ancestral Type II reaction center had some of the basic structural components that would become essential in the coordination of the water-oxidizing complex. Finally, I collect all these ideas, starting at the origin of the first reaction center proteins and ending with the emergence of the water-oxidizing cluster, to hypothesize that the complex and well-organized process of assembly and photoactivation of Photosystem II recapitulate evolutionary transitions in the path to oxygenic photosynthesis.
Collapse
|