1
|
Chawla M, Poater A, Oliva R, Cavallo L. Unveiling structural and energetic characterization of the emissive RNA alphabet anchored in the methylthieno[3,4- d]pyrimidine heterocycle core. Phys Chem Chem Phys 2024; 26:16358-16368. [PMID: 38805177 DOI: 10.1039/d3cp06136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This study presents a comprehensive theoretical exploration of the fluorescent non-natural emissive nucleobases- mthA, mthG, mthC, and mthU derived from the methylthieno[3,4-d]pyrimidine heterocycle. Our calculations, aligning with experimental findings, reveal that these non-natural bases exert minimal influence on the geometry of classical Watson-Crick base pairs within an RNA duplex, maintaining H-bonding akin to natural bases. In terms of energy, the impact of the modified bases, but for mthG, is also found to be little significant. We delved into an in-depth analysis of the photophysical properties of these non-natural bases. This investigation unveiled a correlation between their absorption/emission peaks and the substantial impact of the modification on the energy levels of the highest unoccupied molecular orbitals (HOMO) and the lowest unoccupied molecular orbital (LUMO). Notably, this alteration in energy levels resulted in a significant reduction of the HOMO-LUMO gap, from approximately 5.4-5.5 eV in the natural bases, to roughly 3.9-4.7 eV in the modified bases. This shift led to a consequential change in absorption and emission spectra towards longer wavelengths, elucidating their bathochromic shift.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, Naples, I-80143, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Babar V, Sharma S, Shaikh AR, Oliva R, Chawla M, Cavallo L. Detecting Hachimoji DNA: An Eight-Building-Block Genetic System with MoS 2 and Janus MoSSe Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21427-21437. [PMID: 38634539 PMCID: PMC11071042 DOI: 10.1021/acsami.3c18400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
In the pursuit of personalized medicine, the development of efficient, cost-effective, and reliable DNA sequencing technology is crucial. Nanotechnology, particularly the exploration of two-dimensional materials, has opened different avenues for DNA nucleobase detection, owing to their impressive surface-to-volume ratio. This study employs density functional theory with van der Waals corrections to methodically scrutinize the adsorption behavior and electronic band structure properties of a DNA system composed of eight hachimoji nucleotide letters adsorbed on both MoS2 and MoSSe monolayers. Through a comprehensive conformational search, we pinpoint the most favorable adsorption sites, quantifying their adsorption energies and charge transfer properties. The analysis of electronic band structure unveils the emergence of flat bands in close proximity to the Fermi level post-adsorption, a departure from the pristine MoS2 and MoSSe monolayers. Furthermore, leveraging the nonequilibrium Green's function approach, we compute the current-voltage characteristics, providing valuable insights into the electronic transport properties of the system. All hachimoji bases exhibit physisorption with a horizontal orientation on both monolayers. Notably, base G demonstrates high sensitivity on both substrates. The obtained current-voltage (I-V) characteristics, both without and with base adsorption on MoS2 and the Se side of MoSSe, affirm excellent sensing performance. This research significantly advances our understanding of potential DNA sensing platforms and their electronic characteristics, thereby propelling the endeavor for personalized medicine through enhanced DNA sequencing technologies.
Collapse
Affiliation(s)
- Vasudeo Babar
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sitansh Sharma
- Department
of Research and Innovation, STEMskills Research
and Education Lab Private Limited, Faridabad, Haryana 121002, India
| | - Abdul Rajjak Shaikh
- Department
of Research and Innovation, STEMskills Research
and Education Lab Private Limited, Faridabad, Haryana 121002, India
| | - Romina Oliva
- Department
of Sciences and Technologies, University
Parthenope of Naples, Centro Direzionale Isola C4, 80143 Naples, Italy
| | - Mohit Chawla
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Nguyen TL, Samuel Leon Magdaleno J, Rajjak Shaikh A, Choowongkomon K, Li V, Lee Y, Kim H. Designing a multi-epitope candidate vaccine by employing immunoinformatics approaches to control African swine fever spread. J Biomol Struct Dyn 2023; 41:10214-10229. [PMID: 36510707 DOI: 10.1080/07391102.2022.2153922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The African swine fever virus has been circulating for decades and is highly infectious, often fatal to farmed and wild pigs. There is currently no approved vaccine or treatment for the disease, making prevention even more difficult. Therefore, vaccine development is necessary and urgent to limit the consequences of ASF and ensure the food chain and sustainability of the swine industry. This research study was conducted to design a multi-epitope vaccine for controlling veterinary diseases caused by the African swine fever virus. We employed the immunoinformatics approaches to reveal 37 epitopes from different viral proteins of ASFV. These epitopes were linked to adjuvants and linkers to form a full-fledged immunogenic vaccine construct. The tertiary structure of the final vaccine was predicted using a deep-learning approach. The molecular docking and molecular dynamics predicted stable interactions between the vaccine and immune receptor TLR5 of Sus scrofa (Pig). The MD simulation studies reflect that the calculated parameters like RMSD, RMSF, number of hydrogen bonds, and finally, the buried interface surface area for the complex remained stable throughout the simulation time. This analysis suggests the stability of interface interactions between the TLR5 and the multi-epitope vaccine construct. Further, the physiochemical analysis demonstrated that our designed vaccine construct was expected to have high stability and prolonged half-life time in mammalian cells. Traditional vaccine design experiments require significant time and financial input from the development stage to the final product. Studies like this can assist in accelerating vaccine development while minimizing the cost.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jorge Samuel Leon Magdaleno
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad, Haryana, India
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Vladimir Li
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Youngho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc., Seoul, Republic of Korea
| |
Collapse
|
4
|
Kaushik V, Jain P, Akhtar N, Joshi A, Gupta LR, Grewal RK, Oliva R, Shaikh AR, Cavallo L, Chawla M. Immunoinformatics-Aided Design and In Vivo Validation of a Peptide-Based Multiepitope Vaccine Targeting Canine Circovirus. ACS Pharmacol Transl Sci 2022. [DOI: 10.1021/acsptsci.2c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vikas Kaushik
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Pankaj Jain
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Nahid Akhtar
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Amit Joshi
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Lovi Raj Gupta
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Phagwara 144001, Punjab, India
| | - Ravneet Kaur Grewal
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad 121002, Haryana, India
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143, Naples, Italy
| | - Abdul Rajjak Shaikh
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad 121002, Haryana, India
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Chawla M, Gorle S, Shaikh AR, Oliva R, Cavallo L. Replacing thymine with a strongly pairing fifth Base: A combined quantum mechanics and molecular dynamics study. Comput Struct Biotechnol J 2021; 19:1312-1324. [PMID: 33738080 PMCID: PMC7940798 DOI: 10.1016/j.csbj.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
The non-natural ethynylmethylpyridone C-nucleoside (W), a thymidine (T) analogue that can be incorporated in oligonucleotides by automated synthesis, has recently been reported to form a high fidelity base pair with adenosine (A) and to be well accommodated in B-DNA duplexes. The enhanced binding affinity for A of W, as compared to T, makes it an ideal modification for biotechnological applications, such as efficient probe hybridization for the parallel detection of multiple DNA strands. In order to complement the experimental study and rationalize the impact of the non-natural W nucleoside on the structure, stability and dynamics of DNA structures, we performed quantum mechanics (QM) calculations along with molecular dynamics (MD) simulations. Consistently with the experimental study, our QM calculations show that the A:W base pair has an increased stability as compared to the natural A:T pair, due to an additional CH-π interaction. Furthermore, we show that mispairing between W and guanine (G) causes a distortion in the planarity of the base pair, thus explaining the destabilization of DNA duplexes featuring a G:W pair. MD simulations show that incorporation of single or multiple consecutive A:W pairs in DNA duplexes causes minor changes to the intra- and inter-base geometrical parameters, while a moderate widening/shrinking of the major/minor groove of the duplexes is observed. QM calculations applied to selected stacks from the MD simulations also show an increased stacking energy for W, over T, with the neighboring bases.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abdul Rajjak Shaikh
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Flamme M, Röthlisberger P, Levi-Acobas F, Chawla M, Oliva R, Cavallo L, Gasser G, Marlière P, Herdewijn P, Hollenstein M. Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate. ACS Chem Biol 2020; 15:2872-2884. [PMID: 33090769 DOI: 10.1021/acschembio.0c00396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expansion of the genetic alphabet with additional, unnatural base pairs (UBPs) is an important and long-standing goal in synthetic biology. Nucleotides acting as ligands for the coordination of metal cations have advanced as promising candidates for such an expansion of the genetic alphabet. However, the inclusion of artificial metal base pairs in nucleic acids mainly relies on solid-phase synthesis approaches, and very little is known about polymerase-mediated synthesis. Herein, we report the selective and high yielding enzymatic construction of a silver-mediated base pair (dImC-AgI-dPurP) as well as a two-step protocol for the synthesis of DNA duplexes containing such an artificial metal base pair. Guided by DFT calculations, we also shed light into the mechanism of formation of this artificial base pair as well as into the structural and energetic preferences. The enzymatic synthesis of the dImC-AgI-dPurP artificial metal base pair provides valuable insights for the design of future, more potent systems aiming at expanding the genetic alphabet.
Collapse
Affiliation(s)
- Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l’École de Médecine, 75006 Paris, France
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Pascal Röthlisberger
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900 Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900 Saudi Arabia
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France
| | - Philippe Marlière
- University of Paris Saclay, CNRS, iSSB, UEVE, Genopole, 5 Rue Henri Desbrueres, 91030 Evry, France
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat, 3000 Leuven, Belgium
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
7
|
Kalra K, Gorle S, Cavallo L, Oliva R, Chawla M. Occurrence and stability of lone pair-π and OH-π interactions between water and nucleobases in functional RNAs. Nucleic Acids Res 2020; 48:5825-5838. [PMID: 32392301 PMCID: PMC7293021 DOI: 10.1093/nar/gkaa345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/15/2023] Open
Abstract
We identified over 1000 instances of water-nucleobase stacking contacts in a variety of RNA molecules from a non-redundant set of crystal structures with resolution ≤3.0 Å. Such contacts may be of either the lone pair-π (lp-π) or the OH-π type, in nature. The distribution of the distances of the water oxygen from the nucleobase plane peaks at 3.5 Å for A, G and C, and approximately at 3.1-3.2 Å for U. Quantum mechanics (QM) calculations confirm, as expected, that the optimal energy is reached at a shorter distance for the lp-π interaction as compared to the OH-π one (3.0 versus 3.5 Å). The preference of each nucleobase for either type of interaction closely correlates with its electrostatic potential map. Furthermore, QM calculations show that for all the nucleobases a favorable interaction, of either the lp-π or the OH-π type, can be established at virtually any position of the water molecule above the nucleobase skeleton, which is consistent with the uniform projection of the OW atoms over the nucleobases ring we observed in the experimental occurrences. Finally, molecular dynamics simulations of a model system for the characterization of water-nucleobase stacking contacts confirm the stability of these interactions also under dynamic conditions.
Collapse
Affiliation(s)
- Kanav Kalra
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Suresh Gorle
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Chawla M, Minenkov Y, Vu KB, Oliva R, Cavallo L. Structural and Energetic Impact of Non-natural 7-Deaza-8-azaguanine, 7-Deaza-8-azaisoguanine, and Their 7-Substituted Derivatives on Hydrogen-Bond Pairing with Cytosine and Isocytosine. Chembiochem 2019; 20:2262-2270. [PMID: 30983115 DOI: 10.1002/cbic.201900245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Indexed: 12/12/2022]
Abstract
The impact of 7-deaza-8-azaguanine (DAG) and 7-deaza-8-azaisoguanine (DAiG) modifications on the geometry and stability of the G:C Watson-Crick (cWW) base pair and the G:iC and iG:C reverse Watson-Crick (tWW) base pairs has been characterized theoretically. In addition, the effect on the same base pairs of seven C7-substituted DAG and DAiG derivatives, some of which have been previously experimentally characterized, has been investigated. Calculations indicate that all of these modifications have a negligible impact on the geometry of the above base pairs, and that modification of the heterocycle skeleton has a small impact on the base-pair interaction energies. Instead, base-pair interaction energies are dependent on the nature of the C7 substituent. For the 7-substituted DAG-C cWW systems, a linear correlation between the base-pair interaction energy and the Hammett constant of the 7-substituent is found, with higher interaction energies corresponding to more electron-withdrawing substituents. Therefore, the explored modifications are expected to be accommodated in both parallel and antiparallel nucleic acid duplexes without perturbing their geometry, while the strength of a base pair (and duplex) featuring a DAG modification can, in principle, be tuned by incorporating different substituents at the C7 position.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| | - Yury Minenkov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - Khanh B Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Vietnam
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Chawla M, Poater A, Besalú-Sala P, Kalra K, Oliva R, Cavallo L. Theoretical characterization of sulfur-to-selenium substitution in an emissive RNA alphabet: impact on H-bonding potential and photophysical properties. Phys Chem Chem Phys 2018; 20:7676-7685. [PMID: 29497733 DOI: 10.1039/c7cp07656h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We employ density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to investigate the structural, energetic and optical properties of a new computationally designed RNA alphabet, where the nucleobases, tsA, tsG, tsC, and tsU (ts-bases), have been derived by replacing sulfur with selenium in the previously reported tz-bases, based on the isothiazolo[4,3-d]pyrimidine heterocycle core. We find out that the modeled non-natural bases have minimal impact on the geometry and energetics of the classical Watson-Crick base pairs, thus potentially mimicking the natural bases in a RNA duplex in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge of purines are destabilized as compared to their natural counterparts. We also focus on the photophysical properties of the non-natural bases and correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital. It is indeed stabilized by roughly 1.1-1.6 eV as compared to the natural analogues, resulting in a reduction of the gap between the highest occupied and the lowest unoccupied molecular orbital from 5.3-5.5 eV in the natural bases to 3.9-4.2 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra. Overall, our analysis clearly indicates that the newly modelled ts-bases are expected to exhibit better fluorescent properties as compared to the previously reported tz-bases, while retaining similar H-bonding properties. In addition, we show that a new RNA alphabet based on size-extended benzo-homologated ts-bases can also form stable Watson-Crick base pairs with the natural complementary nucleobases.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
10
|
An NMR and DFT investigation on the interconversion of 9-substituented-N 6 -hydrazone-8-azaadenine derivatives: proton migration or conformational isomerization? Struct Chem 2018. [DOI: 10.1007/s11224-017-1061-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Chawla M, Autiero I, Oliva R, Cavallo L. Energetics and dynamics of the non-natural fluorescent 4AP:DAP base pair. Phys Chem Chem Phys 2018; 20:3699-3709. [DOI: 10.1039/c7cp07400j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantum mechanics and molecular dynamics methods are used to compare the non-natural 4AP–DAP base pair to natural base pairs.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- Thuwal 23955-6900
- Saudi Arabia
| | - Ida Autiero
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- Thuwal 23955-6900
- Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies
- University Parthenope of Naples
- Centro Direzionale Isola C4
- Naples
- Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST)
- Physical Sciences and Engineering Division
- Thuwal 23955-6900
- Saudi Arabia
| |
Collapse
|
12
|
Chawla M, Chermak E, Zhang Q, Bujnicki JM, Oliva R, Cavallo L. Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs. Nucleic Acids Res 2017; 45:11019-11032. [PMID: 28977572 PMCID: PMC5737201 DOI: 10.1093/nar/gkx757] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
The specific folding pattern and function of RNA molecules lies in various weak interactions, in addition to the strong base-base pairing and stacking. One of these relatively weak interactions, characterized by the stacking of the O4' atom of a ribose on top of the heterocycle ring of a nucleobase, has been known to occur but has largely been ignored in the description of RNA structures. We identified 2015 ribose-base stacking interactions in a high-resolution set of non-redundant RNA crystal structures. They are widespread in structured RNA molecules and are located in structural motifs other than regular stems. Over 50% of them involve an adenine, as we found ribose-adenine contacts to be recurring elements in A-minor motifs. Fewer than 50% of the interactions involve a ribose and a base of neighboring residues, while approximately 30% of them involve a ribose and a nucleobase at least four residues apart. Some of them establish inter-domain or inter-molecular contacts and often implicate functionally relevant nucleotides. In vacuo ribose-nucleobase stacking interaction energies were calculated by quantum mechanics methods. Finally, we found that lone pair-π stacking interactions also occur between ribose and aromatic amino acids in RNA-protein complexes.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Edrisse Chermak
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Qingyun Zhang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.,Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy.,King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Hara T, Kodama T, Takegaki Y, Morihiro K, Ito KR, Obika S. Synthesis and Properties of 7-Deazapurine- and 8-Aza-7-deazapurine-Locked Nucleic Acid Analogues: Effect of the Glycosidic Torsion Angle. J Org Chem 2016; 82:25-36. [DOI: 10.1021/acs.joc.6b02525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Takashi Hara
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Kodama
- Graduate
School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yumi Takegaki
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Morihiro
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kosuke Ramon Ito
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate
School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Chawla M, Poater A, Oliva R, Cavallo L. Structural and energetic characterization of the emissive RNA alphabet based on the isothiazolo[4,3-d]pyrimidine heterocycle core. Phys Chem Chem Phys 2016; 18:18045-53. [PMID: 27328414 DOI: 10.1039/c6cp03268k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present theoretical characterization of fluorescent non-natural nucleobases, (tz)A, (tz)G, (tz)C, and (tz)U, derived from the isothiazolo[4,3-d]pyrimidine heterocycle. Consistent with the experimental evidence, our calculations show that the non-natural bases have minimal impact on the geometry and stability of the classical Watson-Crick base pairs, allowing them to accurately mimic natural bases in a RNA duplex, in terms of H-bonding. In contrast, our calculations indicate that H-bonded base pairs involving the Hoogsteen edge are destabilized relative to their natural counterparts. Analysis of the photophysical properties of the non-natural bases allowed us to correlate their absorption/emission peaks to the strong impact of the modification on the energy of the lowest unoccupied molecular orbital, LUMO, which is stabilized by roughly 1.0-1.2 eV relative to the natural analogues, while the highest occupied molecular orbital, HOMO, is not substantially affected. As a result, the HOMO-LUMO gap is reduced from 5.3-5.5 eV in the natural bases to 4.0-4.4 eV in the modified ones, with a consequent bathochromic shift in the absorption and emission spectra.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | |
Collapse
|
15
|
Chawla M, Credendino R, Chermak E, Oliva R, Cavallo L. Theoretical Characterization of the H-Bonding and Stacking Potential of Two Nonstandard Nucleobases Expanding the Genetic Alphabet. J Phys Chem B 2016; 120:2216-24. [DOI: 10.1021/acs.jpcb.6b00125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohit Chawla
- Physical
Sciences and Engineering Division (PSE), Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raffaele Credendino
- Physical
Sciences and Engineering Division (PSE), Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Edrisse Chermak
- Physical
Sciences and Engineering Division (PSE), Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department
of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Luigi Cavallo
- Physical
Sciences and Engineering Division (PSE), Kaust Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|