1
|
Panda C, Kumar S, Gupta S, Pandey LM. Insulin fibrillation under physicochemical parameters of bioprocessing and intervention by peptides and surface-active agents. Crit Rev Biotechnol 2024:1-22. [PMID: 39142855 DOI: 10.1080/07388551.2024.2387167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 06/17/2023] [Indexed: 08/16/2024]
Abstract
Even after the centenary celebration of insulin discovery, there prevail challenges concerning insulin aggregation, not only after repeated administration but also during industrial production, storage, transport, and delivery, significantly impacting protein quality, efficacy, and effectiveness. The aggregation reduces insulin bioavailability, increasing the risk of heightened immunogenicity, posing a threat to patient health, and creating a dent in the golden success story of insulin therapy. Insulin experiences various physicochemical and mechanical stresses due to modulations in pH, temperature, ionic strength, agitation, shear, and surface chemistry, during the upstream and downstream bioprocessing, resulting in insulin unfolding and subsequent fibrillation. This has fueled research in the pharmaceutical industry and academia to unveil the mechanistic insights of insulin aggregation in an attempt to devise rational strategies to regulate this unwanted phenomenon. The present review briefly describes the impacts of environmental factors of bioprocessing on the stability of insulin and correlates with various intermolecular interactions, particularly hydrophobic and electrostatic forces. The aggregation-prone regions of insulin are identified and interrelated with biophysical changes during stress conditions. The quest for novel additives, surface-active agents, and bioderived peptides in decelerating insulin aggregation, which results in overall structural stability, is described. We hope this review will help tackle the real-world challenges of insulin aggregation encountered during bioprocessing, ensuring safer, stable, and globally accessible insulin for efficient management of diabetes.
Collapse
Affiliation(s)
- Chinmaya Panda
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sharad Gupta
- Neurodegeneration and Peptide Engineering Research Lab, Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Lalit M Pandey
- Bio-interface & Environmental Engineering Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
2
|
Sen S, Ali R, Onkar A, Verma S, Ahmad QT, Bhadauriya P, Sinha P, Nair NN, Ganesh S, Verma S. Synthesis of a highly thermostable insulin by phenylalanine conjugation at B29 Lysine. Commun Chem 2024; 7:161. [PMID: 39043846 PMCID: PMC11266353 DOI: 10.1038/s42004-024-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
Globally, millions of diabetic patients require daily life-saving insulin injections. Insulin heat-lability and fibrillation pose significant challenges, especially in parts of the world without ready access to uninterrupted refrigeration. Here, we have synthesized four human insulin analogs by conjugating ε-amine of B29 lysine of insulin with acetic acid, phenylacetic acid, alanine, and phenylalanine residues. Of these, phenylalanine-conjugated insulin, termed FHI, was the most stable under high temperature (65 °C), elevated salt stress (25 mM NaCl), and varying pH levels (ranging from highly acidic pH 1.6 to physiological pH 7.4). It resists fibrillation for a significantly longer duration with sustained biological activity in in vitro, ex vivo, and in vivo and displays prolonged stability over its native counterpart. We further unravel the critical interactions, such as additional aromatic π-π interactions and hydrogen bonding in FHI, that are notably absent in native insulin. These interactions confer enhanced structural stability of FHI and offer a promising solution to the challenges associated with insulin heat sensitivity.
Collapse
Affiliation(s)
- Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Akanksha Onkar
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, 94143, CA, USA
| | - Shivani Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Quazi Taushif Ahmad
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Pratibha Bhadauriya
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Pradip Sinha
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Subramaniam Ganesh
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, 208016, UP, India
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, 208016, UP, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, 208016, UP, India.
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, 208016, UP, India.
| |
Collapse
|
3
|
Rosetti B, Kralj S, Scarel E, Adorinni S, Rossi B, Vargiu AV, Garcia AM, Marchesan S. Insulin amyloid fibril formation reduction by tripeptide stereoisomers. NANOSCALE 2024; 16:11081-11089. [PMID: 38742431 DOI: 10.1039/d4nr00693c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Insulin fibrillation is a problem for diabetic patients that can occur during storage and transport, as well as at the subcutaneous injection site, with loss of bioactivity, inflammation, and various adverse effects. Tripeptides are ideal additives to stabilise insulin formulations, thanks to their low cost of production and inherent cytocompatibility. In this work, we analysed the ability of eight tripeptide stereoisomers to inhibit the fibrillation of human insulin in vitro. The sequences contain proline as β-breaker and Phe-Phe as binding motif for the amyloid-prone aromatic triplet found in insulin. Experimental data based on spectroscopy, fluorescence, microscopy, and calorimetric techniques reveal that one stereoisomer is a more effective inhibitor than the others, and cell live/dead assays confirmed its high cytocompatibility. Importantly, in silico data revealed the key regions of insulin engaged in the interaction with this tripeptide, rationalising the molecular mechanism behind insulin fibril formation reduction.
Collapse
Affiliation(s)
- Beatrice Rosetti
- Chemical Pharmaceutical Science Department, University of Trieste, 34127 Trieste, Italy.
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan, Institute, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Erica Scarel
- Chemical Pharmaceutical Science Department, University of Trieste, 34127 Trieste, Italy.
| | - Simone Adorinni
- Chemical Pharmaceutical Science Department, University of Trieste, 34127 Trieste, Italy.
| | - Barbara Rossi
- Elettra Sincrotrone Trieste, Strada Statale 14 - km 163,5 Basovizza, 34149 Trieste, Italy
| | - Attilio V Vargiu
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Ana M Garcia
- Facultad de Ciencias y Tecnologías Químicas, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Silvia Marchesan
- Chemical Pharmaceutical Science Department, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
4
|
Mohapatra SS, Singh Bisht K, Dhar S, Biswas VK, Raghav SK, Kar RK, Maiti TK, Biswas A. Inhibition of amyloidal aggregation of insulin by amino acid conjugated bile acids: An insight into the possible role of biosurfactants in modulating the fibrillation kinetics and cytotoxicity. J Mol Liq 2024; 397:124142. [DOI: 10.1016/j.molliq.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Warerkar OD, Mudliar NH, Momin MM, Singh PK. Targeting Amyloids with Coated Nanoparticles: A Review on Potential Combinations of Nanoparticles and Bio-Compatible Coatings. Crit Rev Ther Drug Carrier Syst 2024; 41:85-119. [PMID: 37938191 DOI: 10.1615/critrevtherdrugcarriersyst.2023046209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Amyloidosis is the major cause of many neurodegenerative diseases, such as, Alzheimer's and Parkinson's where the misfolding and deposition of a previously functional protein make it inept for carrying out its function. The genesis of amyloid fibril formation and the strategies to inhibit it have been studied extensively, although some parts of this puzzle still remain unfathomable to date. Many classes of molecules have been explored as potential drugs in vitro, but their inability to work in vivo by crossing the blood-brain-barrier has made them an inadequate treatment option. In this regard, nanoparticles (NPs) have turned out to be an exciting alternative because they could overcome many drawbacks of previously studied molecules and provide advantages, such as, greater bioavailability of molecules and target-specific delivery of drugs. In this paper, we present an overview on several coated NPs which have shown promising efficiency in inhibiting fibril formation. A hundred and thirty papers published in the past two decades have been comprehensively reviewed, which majorly encompass NPs comprising different materials like gold, silver, iron-oxide, poly(lactic-co-glycolic acid), polymeric NP, etc., which are coated with various molecules of predominantly natural origin, such as different types of amino acids, peptides, curcumin, drugs, catechin, etc. We hope that this review will shed light on the advancement of symbiotic amalgamation of NPs with molecules from natural sources and will inspire further research on the tremendous therapeutic potential of these combinations for many amyloid-related diseases.
Collapse
Affiliation(s)
- Oshin D Warerkar
- SVKM's Shri C.B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Niyati H Mudliar
- SVKM's Shri C.B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Munira M Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; SVKM's Shri C.B. Patel Research Centre for Chemistry and Biological Sciences, Vile Parle (West), Mumbai, Maharashtra, 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
6
|
Bardineshin F, Bahramikia S, Khodarahmi R, Hadi F. Mesalazine Inhibits Amyloid Formation and Destabilizes Pre-formed Amyloid Fibrils in the Human Insulin. J Fluoresc 2023:10.1007/s10895-022-03142-7. [PMID: 36640210 DOI: 10.1007/s10895-022-03142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Amyloid formation due to protein aggregation is associated with several amyloid diseases (amyloidosis). The use of small organic ligands as inhibitors of protein aggregation is an attractive strategy for the treatment of these diseases. In the present study, we evaluated the in vitro inhibitory and destabilizing effects of Mesalazine on human insulin fibrillation. To induce fibrillation, human insulin was incubated in 50 mM glycine buffer (pH 2.0) at 50 °C. The effect of Mesalazine on insulin amyloid aggregation was studied using spectroscopic, imaging, and computational approaches. Based on the results, the Mesalazine in a concentration-dependent manner (different ratios (1:0.1, 1:0.5, 1:1, and 1:5) of the insulin to Mesalazine) prevented the formation of amyloid fibrils and destabilized pre-formed fibrils. In addition, our molecular docking study confirmed the binding of Mesalazine to insulin through hydrogen bonds and hydrophobic interactions. Our findings suggest that Mesalazine may have therapeutic potential in the prevention of insulin amyloidosis and localized amyloidosis.
Collapse
Affiliation(s)
- Fatemeh Bardineshin
- Department of Biology, MSc of Biology, Lorestan University, Khorramabad, Iran
| | - Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Hadi
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| |
Collapse
|
7
|
Rosetti B, Marchesan S. Peptide Inhibitors of Insulin Fibrillation: Current and Future Challenges. Int J Mol Sci 2023; 24:1306. [PMID: 36674821 PMCID: PMC9863703 DOI: 10.3390/ijms24021306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Amyloidoses include a large variety of local and systemic diseases that share the common feature of protein unfolding or refolding into amyloid fibrils. The most studied amyloids are those directly involved in neurodegenerative diseases, while others, such as those formed by insulin, are surprisingly far less studied. Insulin is a very important polypeptide that plays a variety of biological roles and, first and foremost, is at the basis of the therapy of diabetic patients. It is well-known that it can form fibrils at the site of injection, leading to inflammation and immune response, in addition to other side effects. In this concise review, we analyze the current knowledge on insulin fibrillation, with a focus on the development of peptide-based inhibitors, which are promising candidates for their biocompatibility but still pose challenges to their effective use in therapy.
Collapse
Affiliation(s)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
8
|
Gorai B, Vashisth H. Progress in Simulation Studies of Insulin Structure and Function. Front Endocrinol (Lausanne) 2022; 13:908724. [PMID: 35795141 PMCID: PMC9252437 DOI: 10.3389/fendo.2022.908724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 01/02/2023] Open
Abstract
Insulin is a peptide hormone known for chiefly regulating glucose level in blood among several other metabolic processes. Insulin remains the most effective drug for treating diabetes mellitus. Insulin is synthesized in the pancreatic β-cells where it exists in a compact hexameric architecture although its biologically active form is monomeric. Insulin exhibits a sequence of conformational variations during the transition from the hexamer state to its biologically-active monomer state. The structural transitions and the mechanism of action of insulin have been investigated using several experimental and computational methods. This review primarily highlights the contributions of molecular dynamics (MD) simulations in elucidating the atomic-level details of conformational dynamics in insulin, where the structure of the hormone has been probed as a monomer, dimer, and hexamer. The effect of solvent, pH, temperature, and pressure have been probed at the microscopic scale. Given the focus of this review on the structure of the hormone, simulation studies involving interactions between the hormone and its receptor are only briefly highlighted, and studies on other related peptides (e.g., insulin-like growth factors) are not discussed. However, the review highlights conformational dynamics underlying the activities of reported insulin analogs and mimetics. The future prospects for computational methods in developing promising synthetic insulin analogs are also briefly highlighted.
Collapse
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
9
|
Sen S, Ali R, Onkar A, Ganesh S, Verma S. Strategies for interference of insulin fibrillogenesis: challenges and advances. Chembiochem 2022; 23:e202100678. [PMID: 35025120 DOI: 10.1002/cbic.202100678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Indexed: 11/10/2022]
Abstract
The discovery of insulin came up with very high hopes for diabetic patients. In the year 2021, the world celebrated the 100 th anniversary of the discovery of this vital hormone. However, external use of insulin is highly affected by its aggregating tendency that occurs during its manufacturing, transportation, and improper handling which ultimately leads its pharmaceutically and biologically ineffective form. In this review, we aim to discuss the various approaches used for decelerating insulin aggregation which results in the enhancement of its overall structural stability and usage. The approaches that are discussed are broadly classified as either a measure through excipient additions or by intrinsic modifications in the insulin native structure.
Collapse
Affiliation(s)
- Shantanu Sen
- Indian Institute of Technology Kanpur, Chemistry, INDIA
| | - Rafat Ali
- Indian Institute of Technology Kanpur, Chemistry, Room No 131 Lab No2, CESE department IIT Kanpur, 208016, Kanpur, INDIA
| | - Akanksha Onkar
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Subramaniam Ganesh
- Indian Institute of Technology Kanpur, Biological Sciences and Bioengineering, INDIA
| | - Sandeep Verma
- Indian Institute of Technology-Kanpur, Department of Chemistry, IIT-Kanpur, 208016, Kanpur, INDIA
| |
Collapse
|
10
|
Zhang J, Yao P, You S, Qi W, Su R, He Z. Study on the Kinetics and Mechanism of Ferrocene-Tripeptide Inhibiting Insulin Aggregation. J Mater Chem B 2022; 10:7780-7788. [DOI: 10.1039/d2tb01085b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptides are gaining popularity as neurodegenerative disease-targeted drugs due to their medicinal value and the simplicity in the biomedicine and pharmaceutical industry field. In this study, based on previously studied...
Collapse
|
11
|
Nath S, Roy P, Mandal R, Roy R, Buell AK, Sengupta N, Tarafdar PK. Hydroxy-Porphyrin as an Effective, Endogenous Molecular Clamp during Early Stages of Amyloid Fibrillization. Chem Asian J 2021; 16:3931-3936. [PMID: 34570963 DOI: 10.1002/asia.202100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/08/2022]
Abstract
Amyloid fibril formation of proteins is of great concern in neurodegenerative disease and can be detrimental to the storage and stability of biologics. Recent evidence suggests that insulin fibril formation reduces the efficacy of type II diabetes management and may lead to several complications. To develop anti-amyloidogenic compounds of endogenous origin, we have utilized the hydrogen bond anchoring, π stacking ability of porphyrin, and investigated its role on the inhibition of insulin amyloid formation. We report that hydroxylation and metal removal from the heme moiety yields an excellent inhibitor of insulin fibril formation. Thioflavin T, tyrosine fluorescence, Circular Dichorism (CD) spectroscopy, Field emission scanning electron microscopy (FESEM) and molecular dynamics (MD) simulation studies suggest that hematoporphyrin (HP) having hydrogen bonding ability on both sides is a superior inhibitor compared to hemin and protoporphyrin (PP). Experiments with hen egg white lysozyme (HEWL) amyloid fibril formation also validated the efficacy of endogenous porphyrin based small molecules. Our results will help to decipher a general therapeutic strategy to counter amyloidogenesis.
Collapse
Affiliation(s)
- Soumav Nath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Priti Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Rajat Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark DTU, Søltofts Plads, 2800 Kgs., Lyngby, Denmark
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| |
Collapse
|
12
|
Pachetti M, D'Amico F, Pascolo L, Pucciarelli S, Gessini A, Parisse P, Vaccari L, Masciovecchio C. UV Resonance Raman explores protein structural modification upon fibrillation and ligand interaction. Biophys J 2021; 120:4575-4589. [PMID: 34474016 PMCID: PMC8553600 DOI: 10.1016/j.bpj.2021.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022] Open
Abstract
Amyloids are proteinaceous deposits considered an underlying pathological hallmark of several degenerative diseases. The mechanism of amyloid formation and its inhibition still represent challenging issues, especially when protein structure cannot be investigated by classical biophysical techniques as for the intrinsically disordered proteins (IDPs). In this view, the need to find an alternative way for providing molecular and structural information regarding IDPs prompted us to set a novel, to our knowledge, approach focused on UV Resonance Raman (UVRR) spectroscopy. To test its applicability, we study the fibrillation of hen-egg white lysozyme (HEWL) and insulin as well as their interaction with resveratrol, employing also intrinsic fluorescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The increasing of the β-sheet structure content at the end of protein fibrillation probed by FTIR occurs simultaneously with a major solvent exposure of tryptophan (Trp) and tyrosine (Tyr) residues of HEWL and insulin, respectively, as revealed by UVRR and intrinsic fluorescence spectroscopy. However, because the latter technique is successfully used when proteins naturally contain Trp residues, it shows poor performances in the case of insulin, and the information regarding its tertiary structure is exclusively provided by UVRR spectroscopy. The presence of an increased concentration of resveratrol induces mild changes in the secondary structure of both protein fibrils while remodeling HEWL fibril length and promoting the formation of amorphous aggregates in the case of insulin. Although the intrinsic fluorescence spectra of proteins are hidden by resveratrol signal, UVRR Trp and Tyr bands are resonantly enhanced, showing a good sensitivity to the presence of resveratrol and marking a modification in the noncovalent interactions in which they are involved. Our findings demonstrate that UVRR is successfully employed in the study of aggregation-prone proteins and of their interaction with ligands, especially in the case of Trp-lacking proteins.
Collapse
Affiliation(s)
- Maria Pachetti
- Elettra - Sincrotrone Trieste, Trieste, Italy; Department of Physics, University of Trieste, Trieste, Italy; Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| | | | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Stefania Pucciarelli
- University of Camerino, School of Biosciences and Veterinary Medicine, Camerino, Italy
| | | | - Pietro Parisse
- Elettra - Sincrotrone Trieste, Trieste, Italy; Istituto Officina dei Materiali - CNR (IOM-CNR), Trieste, Italy
| | | | | |
Collapse
|
13
|
Yap J, Deepak RNVK, Tian Z, Ng WH, Goh KC, Foo A, Tee ZH, Mohanam MP, Sim YRM, Degirmenci U, Lam P, Chen Z, Fan H, Hu J. The stability of R-spine defines RAF inhibitor resistance: A comprehensive analysis of oncogenic BRAF mutants with in-frame insertion of αC-β4 loop. SCIENCE ADVANCES 2021; 7:7/24/eabg0390. [PMID: 34108213 PMCID: PMC8189578 DOI: 10.1126/sciadv.abg0390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Although targeting BRAF mutants with RAF inhibitors has achieved promising outcomes in cancer therapy, drug resistance remains a remarkable challenge, and underlying molecular mechanisms are not fully understood. Here, we characterized a previously unknown group of oncogenic BRAF mutants with in-frame insertions (LLRins506 or VLRins506) of αC-β4 loop. Using structure modeling and molecular dynamics simulation, we found that these insertions formed a large hydrophobic network that stabilizes R-spine and thus triggers the catalytic activity of BRAF. Furthermore, these insertions disrupted BRAF dimer interface and impaired dimerization. Unlike BRAF(V600E), these BRAF mutants with low dimer affinity were strongly resistant to all RAF inhibitors in clinic or clinical trials, which arises from their stabilized R-spines. As predicted by molecular docking, the stabilized R-spines in other BRAF mutants also conferred drug resistance. Together, our data indicated that the stability of R-spine but not dimer affinity determines the RAF inhibitor resistance of oncogenic BRAF mutants.
Collapse
Affiliation(s)
- Jiajun Yap
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - R N V Krishna Deepak
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Zizi Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wan Hwa Ng
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Kah Chun Goh
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Alicia Foo
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Zi Heng Tee
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Manju Payini Mohanam
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Yuen Rong M Sim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| | - Paula Lam
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
- Cellvec Pte. Ltd., 100 Pasir Panjang Road, #04-02, Singapore 118518, Singapore
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hao Fan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescen, Singapore 169610, Singapore
| |
Collapse
|
14
|
Blended polar/nonpolar peptide conjugate interferes with human insulin amyloid-mediated cytotoxicity. Bioorg Chem 2021; 111:104899. [PMID: 33882365 DOI: 10.1016/j.bioorg.2021.104899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Insulin, a peptide hormone and a key regulator of blood glucose level, is routinely administered to type-I diabetic patients to achieve the required glycemic control. Insulin aggregation and ensuing amyloidosis has been observed at repeated insulin injection sites and in injectable formulations. The latter occurs due to insulin agglomeration during shipping and storage. Such insulin amyloid leads to enhanced immunogenicity and allow potential attachment to cell membranes leading to cell permeability and apoptosis. Small molecule inhibitors provide useful interruption of this process and inhibit protein misfolding as well as amyloid formation. In this context, we report the propensity of a palmitoylated peptide conjugate to inhibit insulin aggregation and amyloid-mediated cytotoxicity, via designed interference with polypeptide interfacial interactions.
Collapse
|
15
|
Sundaram V, Ramanan RN, Selvaraj M, Vijayaraghavan R, MacFarlane DR, Ooi CW. Structural stability of insulin aspart in aqueous cholinium aminoate ionic liquids based on molecular dynamics simulation studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Das A, Gangarde YM, Tomar V, Shinde O, Upadhyay T, Alam S, Ghosh S, Chaudhary V, Saraogi I. Small-Molecule Inhibitor Prevents Insulin Fibrillogenesis and Preserves Activity. Mol Pharm 2020; 17:1827-1834. [PMID: 32347728 DOI: 10.1021/acs.molpharmaceut.9b01080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloidosis is a well-known but poorly understood phenomenon caused by the aggregation of proteins, often leading to pathological conditions. For example, the aggregation of insulin poses significant challenges during the preparation of pharmaceutical insulin formulations commonly used to treat diabetic patients. Therefore, it is essential to develop inhibitors of insulin aggregation for potential biomedical applications and for important mechanistic insights into amyloidogenic pathways. Here, we have identified a small molecule M1, which causes a dose-dependent reduction in insulin fibril formation. Biophysical analyses and docking results suggest that M1 likely binds to partially unfolded insulin intermediates. Further, M1-treated insulin had lower cytotoxicity and remained functionally active in regulating cell proliferation in cultured Drosophila wing epithelium. Thus, M1 is of great interest as a novel agent for inhibiting insulin aggregation during biopharmaceutical manufacturing.
Collapse
|
17
|
Akbarian M, Yousefi R, Farjadian F, Uversky VN. Insulin fibrillation: toward strategies for attenuating the process. Chem Commun (Camb) 2020; 56:11354-11373. [DOI: 10.1039/d0cc05171c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The environmental factors affecting the rate of insulin fibrillation. The factors are representative.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Reza Yousefi
- Protein Chemistry Laboratory
- Department of Biology
- College of Sciences
- Shiraz University
- Shiraz
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer's Institute
- Morsani College of Medicine
- University of South Florida
- Tampa
- USA
| |
Collapse
|
18
|
Trattnig N, Mayrhofer P, Kunert R, Mach L, Pantophlet R, Kosma P. Comparative Antigenicity of Thiourea and Adipic Amide Linked Neoglycoconjugates Containing Modified Oligomannose Epitopes for the Carbohydrate-Specific anti-HIV Antibody 2G12. Bioconjug Chem 2019; 30:70-82. [PMID: 30525492 PMCID: PMC6340131 DOI: 10.1021/acs.bioconjchem.8b00731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/04/2018] [Indexed: 11/29/2022]
Abstract
Novel neoglycoproteins containing oligomannosidic penta- and heptasaccharides as structural variants of oligomannose-type N-glycans found on human immunodeficiency virus type 1 gp120 have been prepared using different conjugation methods. Two series of synthetic ligands equipped with 3-aminopropyl spacer moieties and differing in the anomeric configuration of the reducing mannose residue were activated either as isothiocyanates or as adipic acid succinimidoyl esters and coupled to bovine serum albumin. Coupling efficiency for adipic acid connected neoglycoconjugates was better than for the thiourea-linked derivatives; the latter constructs, however, exhibited higher reactivity toward antibody 2G12, an HIV-neutralizing antibody with exquisite specificity for oligomannose-type glycans. 2G12 binding avidities for the conjugates, as determined by Bio-Layer Interferometry, were mostly higher for the β-linked ligands and, as expected, increased with the numbers of covalently linked glycans, leading to approximate KD values of 10 to 34 nM for optimized ligand-to-BSA ratios. A similar correlation was observed by enzyme-linked immunosorbent assays. In addition, dendrimer-type ligands presenting trimeric oligomannose epitopes were generated by conversion of the amino-spacer group into a terminal azide, followed by triazole formation using "click chemistry". The severe steric bulk of the ligands, however, led to poor efficiency in the coupling step and no increased antibody binding by the resulting neoglycoconjugates, indicating that the low degree of substitution and the spatial orientation of the oligomannose epitopes within these trimeric ligands are not conducive to multivalent 2G12 binding.
Collapse
Affiliation(s)
- Nino Trattnig
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Patrick Mayrhofer
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Renate Kunert
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Lukas Mach
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ralph Pantophlet
- Faculty
of Health Sciences and Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | - Paul Kosma
- Department of Chemistry, Department of Biotechnology, and Department of Applied Genetics and
Cell Biology, University of Natural Resources
and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
19
|
Krishna Deepak RNV, Abdullah A, Talwar P, Fan H, Ravanan P. Identification of FDA-approved drugs as novel allosteric inhibitors of human executioner caspases. Proteins 2018; 86:1202-1210. [PMID: 30194780 DOI: 10.1002/prot.25601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/10/2023]
Abstract
The regulation of apoptosis is a tightly coordinated process and caspases are its chief regulators. Of special importance are the executioner caspases, caspase-3/7, the activation of which irreversibly sets the cell on the path of death. Dysregulation of apoptosis, particularly an increased rate of cell death lies at the root of numerous human diseases. Although several peptide-based inhibitors targeting the homologous active site region of caspases have been developed, owing to their non-specific activity and poor pharmacological properties their use has largely been restricted. Thus, we sought to identify FDA-approved drugs that could be repurposed as novel allosteric inhibitors of caspase-3/7. In this study, we virtually screened a catalog of FDA-approved drugs targeting an allosteric pocket located at the dimerization interface of caspase-3/7. From among the top-scoring hits we short-listed 5 compounds for experimental validation. Our enzymatic assays using recombinant caspase-3 suggested that 4 out of the 5 drugs effectively inhibited caspase-3 enzymatic activity in vitro with IC50 values ranging ~10-55 μM. Structural analysis of the docking poses show the 4 compounds forming specific non-covalent interactions at the allosteric pocket suggesting that these molecules could disrupt the adjacently-located active site. In summary, we report the identification of 4 novel non-peptide allosteric inhibitors of caspase-3/7 from among FDA-approved drugs.
Collapse
Affiliation(s)
- R N V Krishna Deepak
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ahmad Abdullah
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,Centre for Computational Biology, DUKE-NUS Medical School, Singapore
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
Roy Chowdhury S, Mondal S, Iyer PK. Blocking Oligomeric Insulin Amyloid Fibrillation via Perylenebisimides Containing Dipeptide Tentacles. ACS Biomater Sci Eng 2018; 4:4076-4083. [DOI: 10.1021/acsbiomaterials.8b00927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Zheng Q, Lazo ND. Mechanistic Studies of the Inhibition of Insulin Fibril Formation by Rosmarinic Acid. J Phys Chem B 2018; 122:2323-2331. [PMID: 29401384 DOI: 10.1021/acs.jpcb.8b00689] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The self-assembly of insulin to form amyloid fibrils has been widely studied because it is a significant problem in the medical management of diabetes and is an important model system for the investigation of amyloid formation and its inhibition. A few inhibitors of insulin fibrillation have been identified with potencies that could be higher. Knowledge of how these work at the molecular level is not known but important for the development of more potent inhibitors. Here we show that rosmarinic acid completely inhibits amyloid formation by dimeric insulin at pH 2 and 60 °C. In contrast to other polyphenols, rosmarinic acid is soluble in water and does not degrade at elevated temperatures, and thus we were able to decipher the mechanism of inhibition by a combination of solution-state 1H NMR spectroscopy and molecular docking. On the basis of 1H chemical shift perturbations, intermolecular nuclear Overhauser effect enhancements between rosmarinic acid and specific residues of insulin, and slowed dynamics of rosmarinic acid in the presence of insulin, we show that rosmarinic acid binds to a pocket found on the surface of each insulin monomer. This results in the formation of a mixed tetramolecular aromatic network on the surface of insulin dimer, resulting in increased resistance of the amyloidogenic protein to thermal unfolding. This finding opens new avenues for the design of potent inhibitors of amyloid formation and provides strong experimental evidence for the role of surface aromatic clusters in increasing the thermal stability of proteins.
Collapse
Affiliation(s)
- Qiuchen Zheng
- Carlson School of Chemistry and Biochemistry, Clark University , 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Noel D Lazo
- Carlson School of Chemistry and Biochemistry, Clark University , 950 Main Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
22
|
Han X, Tian C, Gandra I, Eslava V, Galindres D, Vargas E, Leblanc R. The Investigation on Resorcinarenes towards either Inhibiting or Promoting Insulin Fibrillation. Chemistry 2017; 23:17903-17907. [DOI: 10.1002/chem.201704932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Xu Han
- Department of Chemistry; University of Miami; Coral Gables FL 33146 United States
| | - Chuan Tian
- Department of Chemistry and Laufer Center for Physical and Quantitative Biology; Stony Brook University; Stony Brook New York 11794-3400 United States
| | - Ingrid Gandra
- Florida International University; 10555 West Flagler Street Miami FL 33174 United States
| | - Valeria Eslava
- Departamento de Quimica; Universidad de los Andes; Cr. 1, No. 18A 10 Bogota 111711 Colombia
| | - Diana Galindres
- Departamento de Quimica; Universidad de los Andes; Cr. 1, No. 18A 10 Bogota 111711 Colombia
| | - Edgar Vargas
- Departamento de Quimica; Universidad de los Andes; Cr. 1, No. 18A 10 Bogota 111711 Colombia
| | - Roger Leblanc
- Department of Chemistry; University of Miami; Coral Gables FL 33146 United States
| |
Collapse
|
23
|
Mishra NK, Jain A, Peter C, Verma S. Combining Experimental and Simulation Techniques to Understand Morphology Control in Pentapeptide Nanostructures. J Phys Chem B 2017; 121:8155-8161. [DOI: 10.1021/acs.jpcb.7b06005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Narendra Kumar Mishra
- Department
of Chemistry, Center for Nanoscience and Soft Nanotechnology, Indian Institute of Technology Kanpur, Kanpur, 208016 (UP), India
| | - Alok Jain
- Fachbereich
Chemie, Universität Konstanz, D-78457 Konstanz, Germany
| | - Christine Peter
- Fachbereich
Chemie, Universität Konstanz, D-78457 Konstanz, Germany
| | - Sandeep Verma
- Department
of Chemistry, Center for Nanoscience and Soft Nanotechnology, Indian Institute of Technology Kanpur, Kanpur, 208016 (UP), India
| |
Collapse
|
24
|
Anand BG, Shekhawat DS, Dubey K, Kar K. Uniform, Polycrystalline, and Thermostable Piperine-Coated Gold Nanoparticles to Target Insulin Fibril Assembly. ACS Biomater Sci Eng 2017; 3:1136-1145. [DOI: 10.1021/acsbiomaterials.7b00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bibin G. Anand
- Department
of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Dolat S. Shekhawat
- Department
of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Kriti Dubey
- Department
of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Karunakar Kar
- School
of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
25
|
Alam P, Beg AZ, Siddiqi MK, Chaturvedi SK, Rajpoot RK, Ajmal MR, Zaman M, Abdelhameed AS, Khan RH. Ascorbic acid inhibits human insulin aggregation and protects against amyloid induced cytotoxicity. Arch Biochem Biophys 2017; 621:54-62. [DOI: 10.1016/j.abb.2017.04.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 12/28/2022]
|
26
|
Ratha BN, Ghosh A, Brender JR, Gayen N, Ilyas H, Neeraja C, Das KP, Mandal AK, Bhunia A. Inhibition of Insulin Amyloid Fibrillation by a Novel Amphipathic Heptapeptide: MECHANISTIC DETAILS STUDIED BY SPECTROSCOPY IN COMBINATION WITH MICROSCOPY. J Biol Chem 2016; 291:23545-23556. [PMID: 27679488 PMCID: PMC5095409 DOI: 10.1074/jbc.m116.742460] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/24/2016] [Indexed: 02/02/2023] Open
Abstract
The aggregation of insulin into amyloid fibers has been a limiting factor in the development of fast acting insulin analogues, creating a demand for excipients that limit aggregation. Despite the potential demand, inhibitors specifically targeting insulin have been few in number. Here we report a non-toxic and serum stable-designed heptapeptide, KR7 (KPWWPRR-NH2), that differs significantly from the primarily hydrophobic sequences that have been previously used to interfere with insulin amyloid fibrillation. Thioflavin T fluorescence assays, circular dichroism spectroscopy, and one-dimensional proton NMR experiments suggest KR7 primarily targets the fiber elongation step with little effect on the early oligomerization steps in the lag time period. From confocal fluorescence and atomic force microscopy experiments, the net result appears to be the arrest of aggregation in an early, non-fibrillar aggregation stage. This mechanism is noticeably different from previous peptide-based inhibitors, which have primarily shifted the lag time with little effect on later stages of aggregation. As insulin is an important model system for understanding protein aggregation, the new peptide may be an important tool for understanding peptide-based inhibition of amyloid formation.
Collapse
Affiliation(s)
| | | | - Jeffrey R Brender
- Radiation Biology Branch, National Institutes of Health, Bethesda, Maryland 20814
| | - Nilanjan Gayen
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | | | - Chilukoti Neeraja
- TIFR Centre for Interdisciplinary Sciences (TCIS), Narsingi, Hyderabad 500075, India, and
| | - Kali P Das
- Department of Chemistry, 93/1 APC Road, Bose Institute, Kolkata 700009, India
| | - Atin K Mandal
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | | |
Collapse
|
27
|
Jayamani J, Shanmugam G. Gelatin as a Potential Inhibitor of Insulin Amyloid Fibril Formation. ChemistrySelect 2016. [DOI: 10.1002/slct.201600692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jayaraman Jayamani
- Bioorganic Chemistry Laboratory; CSIR-Central Leather Research Institute, Adyar; Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus; Sardar Patel Road Chennai 600020 India
| | - Ganesh Shanmugam
- Bioorganic Chemistry Laboratory; CSIR-Central Leather Research Institute, Adyar; Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus; Sardar Patel Road Chennai 600020 India
| |
Collapse
|
28
|
Lavanya P, Ramaiah S, Anbarasu A. Ethyl 4-(4-methylphenyl)-4-pentenoate from Vetiveria zizanioides Inhibits Dengue NS2B-NS3 Protease and Prevents Viral Assembly: A Computational Molecular Dynamics and Docking Study. Cell Biochem Biophys 2016; 74:337-51. [PMID: 27324039 DOI: 10.1007/s12013-016-0741-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/09/2016] [Indexed: 12/16/2022]
Abstract
Around 50 % of the world's population is at the risk of dengue, a viral infection. Presently, there are not many drugs and prophylactic measures available to control dengue viral infection, and hence, there is an urgent need to develop effective antidengue compound from natural sources. In the current study, we explored the antiviral properties of the medicinal plant Vetiveria zizanioides against dengue virus. Initially, the antiviral properties of active compounds were examined using docking analysis along with reference ligand. The enzyme-ligand complex which showed higher binding affinity than the reference ligand was employed for subsequent analysis. The stability of the top scoring enzyme-ligand complex was further validated using molecular simulation studies. On the whole, the study reveals that the compound Ethyl 4-(4-methylphenyl)-4-pentenoate has an effective antiviral property, which can serve as a potential lead molecule in drug discovery process.
Collapse
Affiliation(s)
- P Lavanya
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|