1
|
Tao S, Run Y, Monchaud D, Zhang W. i-Motif DNA: identification, formation, and cellular functions. Trends Genet 2024; 40:853-867. [PMID: 38902139 DOI: 10.1016/j.tig.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
An i-motif (iM) is a four-stranded (quadruplex) DNA structure that folds from cytosine (C)-rich sequences. iMs can fold under many different conditions in vitro, which paves the way for their formation in living cells. iMs are thought to play key roles in various DNA transactions, notably in the regulation of genome stability, gene transcription, mRNA translation, DNA replication, telomere and centromere functions, and human diseases. We summarize the different techniques used to assess the folding of iMs in vitro and provide an overview of the internal and external factors that affect their formation and stability in vivo. We describe the possible biological relevance of iMs and propose directions towards their use as target in biology.
Collapse
Affiliation(s)
- Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yonghang Run
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China
| | - David Monchaud
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 6302, Université Bourgogne Franche Comté (UBFC), Dijon, France
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production (CIC-MCP), Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
2
|
Dong T, Yu P, Zhao J, Wang J. Site specifically probing the unfolding process of human telomere i-motif DNA using vibrationally enhanced alkynyl stretch. Phys Chem Chem Phys 2024; 26:3857-3868. [PMID: 38224126 DOI: 10.1039/d3cp05328h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The microscopic unfolding process of a cytosine-rich DNA forming i-motif by hemi-protonated base pairs is related to gene regulation. However, the detailed thermal unfolding mechanism and the protonation/deprotonation status of site-specific cytosine in DNA in a physiological environment are still obscure. To address this issue, a vibration-enhanced CC probe tagged on 5'E terminal cytosine of human telomere i-motif DNA was examined using linear and nonlinear infrared (IR) spectroscopies and quantum-chemistry calculations. The CC probe extended into the major groove of the i-motif was found using nonlinear IR results only to introduce a minor steric effect on both steady-state structure and local structure dynamics; however, its IR absorption profile effectively reports the cleavage of the hemi-protonated base pair of C1-C13 upon the unfolding with C1 remaining protonated. The temperature mid-point (Tm) of the local transition reported using the CC tag was slightly lower than the Tm of global transition, and the enthalpy of the former exceeds 60% of the global transition. It is shown that the base-pair unraveling is noncooperative, with outer base pairs breaking first and being likely the rate limiting step. Our results offered an in-depth understanding of the macroscopic unfolding characteristics of the i-motif DNA and provided a nonlinear IR approach to monitoring the local structural transition and dynamics of DNA and its complexes.
Collapse
Affiliation(s)
- Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Mustafa G, Gyawali P, Taylor JA, Maleki P, Nunez MV, Guntrum MC, Shiekh S, Balci H. A single molecule investigation of i-motif stability, folding intermediates, and potential as in-situ pH sensor. Front Mol Biosci 2022; 9:977113. [PMID: 36072435 PMCID: PMC9441956 DOI: 10.3389/fmolb.2022.977113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
We present a collection of single molecule work on the i-motif structure formed by the human telomeric sequence. Even though it was largely ignored in earlier years of its discovery due to its modest stability and requirement for low pH levels (pH < 6.5), the i-motif has been attracting more attention recently as both a physiologically relevant structure and as a potent pH sensor. In this manuscript, we establish single molecule Förster resonance energy transfer (smFRET) as a tool to study the i-motif over a broad pH and ionic conditions. We demonstrate pH and salt dependence of i-motif formation under steady state conditions and illustrate the intermediate states visited during i-motif folding in real time at the single molecule level. We also show the prominence of intermediate folding states and reversible folding/unfolding transitions. We present an example of using the i-motif as an in-situ pH sensor and use this sensor to establish the time scale for the pH drop in a commonly used oxygen scavenging system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH, United States
| |
Collapse
|
4
|
Gao Y, Fan X, Zhang X, Guan Q, Xing Y, Song W. Switchable Multiplex Photoelectrochemical Immunoassay of Aβ 42 and Aβ 40 Based on a pH-Responsive i-Motif Probe and Pyrene-Based MOF Photocathode. Anal Chem 2022; 94:6621-6627. [PMID: 35441505 DOI: 10.1021/acs.analchem.2c01142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In accurately diagnosing Alzheimer's disease (AD) and distinguishing AD from other dementia, the concentration ratio of amyloid-beta 42 (Aβ42) to Aβ40 is more reliable than the concentration of Aβ42 alone. For the multiplex PEC assay, generating an independent photocurrent of multiple targets on a single interface is a great challenge. Herein, an i-motif-based switchable sensing approach is proposed to construct a pH-regulated multiplex PEC immunosensor for Aβ42 and Aβ40 by using Bi-TBAPy as an efficient photoactive cathode material. An independent photocurrent signal of Aβ42 and Aβ40 is produced through the regulation of the electron-transfer tunneling distance by a pH-dependent configuration transition of the i-motif DNA. In a 96-well plate, immunological recognition of Aβ42 (or Aβ40) coupled with an enzymatic catalytic reaction produces an acidic (or alkaline) lysis solution, which triggers the formation and unravelment of the i-motif structure. The above configuration transition regulates the distance between Au NPs labeled SH-DNA and Bi-TBAPy, leading to PEC signal switching. Smart integration of the pH-responsive switchable DNA probe with a high-efficiency photocathode enables the precise monitoring of Aβ42 and Aβ40 at a single interface in a wide detection range (10 fg/mL ∼ 1 μg/mL and 1 pg/mL ∼ 1 μg/mL) with detection limit of 4.5 fg/mL and 0.52 pg/mL, respectively. The proposed i-motif-based switchable sensing strategy paves a new avenue for a multiplex PEC assay on a single interface, showing great prospects in bioanalysis and early disease diagnosis.
Collapse
Affiliation(s)
- Yao Gao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xue Fan
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xuechen Zhang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qinglin Guan
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Yongheng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Ruiz N, Jarosova P, Taborsky P, Gargallo R. Study of the interaction of the palmatine alkaloid with hybrid G-quadruplex/duplex and i-motif/duplex DNA structures. Biophys Chem 2021; 281:106715. [PMID: 34784553 DOI: 10.1016/j.bpc.2021.106715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022]
Abstract
There is an increasing interest in the study of guanine or cytosine-rich sequences that may fold into G-quadruplex (G4) or i-motif (iM) structures showing a short hairpin (or stem-loop) stabilized by Watson-Crick base pairs. These hybrid spatial arrangements may be target of ligands that have been shown to interact strongly with B-DNA. In this work, the interaction of the palmatine alkaloid with several sequences forming different G4s, iMs, and hybrid structures has been studied by means of spectroscopic and separation techniques, as well as multivariate data analysis methods. At the experimental conditions used in this work, the results have shown that this ligand strongly stabilizes parallel G4 structures, whereas a weaker interaction was observed with the antiparallel G4 adopted by the thrombin-binding aptamer or iMs. The presence of hairpins within the loops scarcely affects the affinity of this ligand for the hybrid G4/duplex or iM/duplex structures. Fluorescence measurements have provided evidence of a certain interaction with iMs at pH 5.1, despite the absence of thermal stabilization effects.
Collapse
Affiliation(s)
- Noelia Ruiz
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí I Franqués 1-11, E-08028 Barcelona, Spain
| | - Petra Jarosova
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Taborsky
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí I Franqués 1-11, E-08028 Barcelona, Spain.
| |
Collapse
|
6
|
Amato J, D'Aria F, Marzano S, Iaccarino N, Randazzo A, Giancola C, Pagano B. On the thermodynamics of folding of an i-motif DNA in solution under favorable conditions. Phys Chem Chem Phys 2021; 23:15030-15037. [PMID: 34151914 DOI: 10.1039/d1cp01779a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Under slightly acidic conditions, cytosine-rich DNA sequences can form non-canonical secondary structures called i-motifs, which occur as four stretches of cytosine repeats form hemi-protonated C·C+ base pairs. The growing interest in the i-motif structures as important components in functional DNA-based nanotechnology or as potential targets of anticancer drugs, increases the need for a deep understanding of the energetics of their structural transitions. Here, a combination of spectroscopic and calorimetric techniques is used to unravel the thermodynamics of folding of an i-motif DNA under favorable conditions. The results give new insights into the energetic aspects of i-motifs and show that thermodynamic and thermal stability are related but not identical properties of such DNA structures.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| |
Collapse
|
7
|
Iaccarino N, Cheng M, Qiu D, Pagano B, Amato J, Di Porzio A, Zhou J, Randazzo A, Mergny J. Effects of Sequence and Base Composition on the CD and TDS Profiles of i‐DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nunzia Iaccarino
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux Inserm U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Bruno Pagano
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Jussara Amato
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Anna Di Porzio
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Antonio Randazzo
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux Inserm U 1212, CNRS UMR5320 IECB 33607 Pessac France
- Laboratoire d'Optique et Biosciences Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris 91128 Palaiseau France
| |
Collapse
|
8
|
Iaccarino N, Cheng M, Qiu D, Pagano B, Amato J, Di Porzio A, Zhou J, Randazzo A, Mergny J. Effects of Sequence and Base Composition on the CD and TDS Profiles of i-DNA. Angew Chem Int Ed Engl 2021; 60:10295-10303. [PMID: 33617090 PMCID: PMC8251954 DOI: 10.1002/anie.202016822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/19/2022]
Abstract
The i-motif DNA, also known as i-DNA, is a non-canonical DNA secondary structure formed by cytosine-rich sequences, consisting of two intercalated parallel-stranded duplexes held together by hemi-protonated cytosine-cytosine+ (C:C+ ) base pairs. The growing interest in the i-DNA structure as a target in anticancer therapy increases the need for tools for a rapid and meaningful interpretation of the spectroscopic data of i-DNA samples. Herein, we analyzed the circular dichroism (CD) and thermal difference UV-absorbance spectra (TDS) of 255 DNA sequences by means of multivariate data analysis, aiming at unveiling peculiar spectral regions that could be used as diagnostic features during the analysis of i-DNA-forming sequences.
Collapse
Affiliation(s)
- Nunzia Iaccarino
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
- ARNA LaboratoryUniversité de BordeauxInserm U 1212, CNRS UMR5320IECB33607PessacFrance
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
| | - Bruno Pagano
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Jussara Amato
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Anna Di Porzio
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
| | - Antonio Randazzo
- Department of PharmacyUniversity of Naples Federico IIVia D. Montesano 4980131NaplesItaly
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023China
- ARNA LaboratoryUniversité de BordeauxInserm U 1212, CNRS UMR5320IECB33607PessacFrance
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMInstitut Polytechnique de Paris91128PalaiseauFrance
| |
Collapse
|
9
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny J. Thermal and pH Stabilities of i‐DNA: Confronting in vitro Experiments with Models and In‐Cell NMR Data. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Eva Ištvánková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Samir Amrane
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Aurore Guédin
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Laurent Lacroix
- IBENS Ecole Normale Supérieure CNRS INSERM PSL Research University 75005 Paris France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Lukáš Trantírek
- Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
| | - Aleksandr B. Sahakyan
- MRC WIMM Centre for Computational Biology MRC Weatherall Institute of Molecular Medicine Radcliffe Department of Medicine University of Oxford Oxford OX3 9DS UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jean‐Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry & Chemical Engineering Nanjing University Nanjing 210023 China
- ARNA Laboratory Université de Bordeaux, INSERM U 1212, CNRS UMR5320 IECB 33607 Pessac France
- Laboratoire d'Optique et Biosciences Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris 91128 Palaiseau France
| |
Collapse
|
10
|
Cheng M, Qiu D, Tamon L, Ištvánková E, Víšková P, Amrane S, Guédin A, Chen J, Lacroix L, Ju H, Trantírek L, Sahakyan AB, Zhou J, Mergny JL. Thermal and pH Stabilities of i-DNA: Confronting in vitro Experiments with Models and In-Cell NMR Data. Angew Chem Int Ed Engl 2021; 60:10286-10294. [PMID: 33605024 DOI: 10.1002/anie.202016801] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that i-DNA, a four-stranded cytosine-rich DNA also known as the i-motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3-6 cytosines with different spacer lengths has been tested. While i-DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability. Stability also depends on the length of the C-tracts at both acidic and neutral pHs. This study provides a global picture on i-DNA stability thanks to the large size of the introduced data set; it reveals unexpected features and allows to conclude that determinants of i-DNA stability do not mirror those of G-quadruplexes. Our results illustrate the structural roles of loops and C-tracts on i-DNA stability, confirm its formation in cells, and allow establishing rules to predict its stability.
Collapse
Affiliation(s)
- Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Liezel Tamon
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Eva Ištvánková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Pavlína Víšková
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Samir Amrane
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Laurent Lacroix
- IBENS, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | - Aleksandr B Sahakyan
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China.,ARNA Laboratory, Université de Bordeaux, INSERM U 1212, CNRS UMR5320, IECB, 33607, Pessac, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
11
|
Wang B, Chatterton E. Identifying i-motif formation using capillary electrophoresis. Electrophoresis 2021; 42:1300-1305. [PMID: 33710657 DOI: 10.1002/elps.202100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
Over the past few years, intercalated motifs (i-motifs) have attracted attention due to the direct visualization of their existence in the nuclei of human cells. Traditionally, i-motifs have been studied using expensive and complicated NMR, and/or relatively inexpensive but less common circular dichroism spectrometry. The aim of this study was to investigate the feasibility of using less expensive, less complicated, and more widely available CE as an alternative for i-motif related research. The mobilities of two DNA and RNA i-motifs in CE were determined under different pH conditions. Our results demonstrate that CE is able to identify and differentiate mostly folded, partially folded, and mostly unfolded DNA and RNA i-motifs through changes in peak shape and migration time, thus providing a new method to study both i-motif conformation and the interactions between i-motifs and their ligands.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| | - Eric Chatterton
- Department of Chemistry, Marshall University, Huntington, WV, 25755, USA
| |
Collapse
|
12
|
MD-TSPC4: Computational Method for Predicting the Thermal Stability of I-Motif. Int J Mol Sci 2020; 22:ijms22010061. [PMID: 33374624 PMCID: PMC7793491 DOI: 10.3390/ijms22010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
I-Motif is a tetrameric cytosine-rich DNA structure with hemi-protonated cytosine: cytosine base pairs. Recent evidence showed that i-motif structures in human cells play regulatory roles in the genome. Therefore, characterization of novel i-motifs and investigation of their functional implication are urgently needed for comprehensive understanding of their roles in gene regulation. However, considering the complications of experimental investigation of i-motifs and the large number of putative i-motifs in the genome, development of an in silico tool for the characterization of i-motifs in the high throughput scale is necessary. We developed a novel computation method, MD-TSPC4, to predict the thermal stability of i-motifs based on molecular modeling and molecular dynamic simulation. By assuming that the flexibility of loops in i-motifs correlated with thermal stability within certain temperature ranges, we evaluated the correlation between the root mean square deviations (RMSDs) of model structures and the thermal stability as the experimentally obtained melting temperature (Tm). Based on this correlation, we propose an equation for Tm prediction from RMSD. We expect this method can be useful for estimating the overall structure and stability of putative i-motifs in the genome, which can be a starting point of further structural and functional studies of i-motifs.
Collapse
|
13
|
Thorne BN, Ellenbroek BA, Day DJ. Evaluation of i-Motif Formation in the Serotonin Transporter-Linked Polymorphic Region. Chembiochem 2020; 22:349-353. [PMID: 32840058 DOI: 10.1002/cbic.202000513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/23/2020] [Indexed: 01/30/2023]
Abstract
Neuropsychiatric disorders such as major depressive disorder (MDD) arise from a complex set of genetic and environmental factors. The serotonin transporter (SERT) is a key regulator of synaptic serotonin (5-HT), and its inhibition is an important pharmacological target for treating MDD. The SERT-linked polymorphic region (5-HTTLPR) contains two major variants (short and long) that have been implicated in modulating susceptibility to MDD by altering the level of expression of SERT. Both variants contain C-rich repeats that conform to consensus i-motif folding sequences. i-Motifs are quadruplex DNA structures that have been proposed to have a role in transcription regulation. With spectroscopic techniques, we demonstrate that both alleles are able to form i-motifs at acidic pH, and at neutral pH under conditions of molecular crowding. This highlights the potential for i-motif formation to contribute to transcriptional regulation of the serotonin transporter, with a potential role in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bryony N Thorne
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand
| | - Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington, Faculty of Science, Wellington, 6012, New Zealand
| | - Darren J Day
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand
| |
Collapse
|
14
|
A colorimetric and ratiometric glucose sensor based on conformational switch of i-motif DNA. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Novoseltseva AA, Ivanov NM, Novikov RA, Tkachev YV, Bunin DA, Gambaryan AS, Tashlitsky VN, Arutyunyan AM, Kopylov AM, Zavyalova EG. Structural and Functional Aspects of G-Quadruplex Aptamers Which Bind a Broad Range of Influenza A Viruses. Biomolecules 2020; 10:biom10010119. [PMID: 31936820 PMCID: PMC7022617 DOI: 10.3390/biom10010119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
An aptamer is a synthetic oligonucleotide with a unique spatial structure that provides specific binding to a target. To date, several aptamers to hemagglutinin of the influenza A virus have been described, which vary in affinity and strain specificity. Among them, the DNA aptamer RHA0385 is able to recognize influenza hemagglutinins with highly variable sequences. In this paper, the structure of RHA0385 was studied by circular dichroism spectroscopy, nuclear magnetic resonance, and size-exclusion chromatography, demonstrating the formation of a parallel G-quadruplex structure. Three derivatives of RHA0385 were designed in order to determine the contribution of the major loop to affinity. Shortening of the major loop from seven to three nucleotides led to stabilization of the scaffold. The affinities of the derivatives were studied by surface plasmon resonance and an enzyme-linked aptamer assay on recombinant hemagglutinins and viral particles, respectively. The alterations in the loop affected the binding to influenza hemagglutinin, but did not abolish it. Contrary to aptamer RHA0385, two of the designed aptamers were shown to be conformationally homogeneous, retaining high affinities and broad binding abilities for both recombinant hemagglutinins and whole influenza A viruses.
Collapse
Affiliation(s)
- Anastasia A. Novoseltseva
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
- Correspondence: ; Tel.: +7-495-939-3149
| | - Nikita M. Ivanov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Roman A. Novikov
- Engelhardt Institute of Molecular Biology RAS, 119991 Moscow, Russia; (R.A.N.)
| | - Yaroslav V. Tkachev
- Engelhardt Institute of Molecular Biology RAS, 119991 Moscow, Russia; (R.A.N.)
| | - Dmitry A. Bunin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Alexandra S. Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia;
| | - Vadim N. Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Alexander M. Arutyunyan
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey M. Kopylov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| | - Elena G. Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.M.I.); (D.A.B.); (V.N.T.); (A.M.K.); (E.G.Z.)
| |
Collapse
|
16
|
Školáková P, Renčiuk D, Palacký J, Krafčík D, Dvořáková Z, Kejnovská I, Bednářová K, Vorlíčková M. Systematic investigation of sequence requirements for DNA i-motif formation. Nucleic Acids Res 2019; 47:2177-2189. [PMID: 30715498 PMCID: PMC6412112 DOI: 10.1093/nar/gkz046] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
The formation of intercalated motifs (iMs) - secondary DNA structures based on hemiprotonated C.C+ pairs in suitable cytosine-rich DNA sequences, is reflected by typical changes in CD and UV absorption spectra. By means of spectroscopic methods, electrophoresis, chemical modifications and other procedures, we characterized iM formation and stability in sequences with different cytosine block lengths interrupted by various numbers and types of nucleotides. Particular attention was paid to the formation of iMs at pH conditions close to neutral. We identified the optimal conditions and minimal requirements for iM formation in DNA sequences, and addressed gaps and inaccurate data interpretations in existing studies to specify principles of iM formation and modes of their folding.
Collapse
Affiliation(s)
- Petra Školáková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Daniel Renčiuk
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Jan Palacký
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Daniel Krafčík
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - Zuzana Dvořáková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Iva Kejnovská
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Klára Bednářová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Michaela Vorlíčková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
17
|
Abdelhamid MA, Fábián L, MacDonald CJ, Cheesman MR, Gates AJ, Waller ZA. Redox-dependent control of i-Motif DNA structure using copper cations. Nucleic Acids Res 2019; 46:5886-5893. [PMID: 29800233 PMCID: PMC6159522 DOI: 10.1093/nar/gky390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022] Open
Abstract
Previous computational studies have shown that Cu+ can act as a substitute for H+ to support formation of cytosine (C) dimers with similar conformation to the hemi-protonated base pair found in i-motif DNA. Through a range of biophysical methods, we provide experimental evidence to support the hypothesis that Cu+ can mediate C–C base pairing in i-motif DNA and preserve i-motif structure. These effects can be reversed using a metal chelator, or exposure to ambient oxygen in the air that drives oxidation of Cu+ to Cu2+, a comparatively weak ligand. Herein, we present a dynamic and redox-sensitive system for conformational control of an i-motif forming DNA sequence in response to copper cations.
Collapse
Affiliation(s)
- Mahmoud As Abdelhamid
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - László Fábián
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Colin J MacDonald
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Myles R Cheesman
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew J Gates
- Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Zoë Ae Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.,Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
18
|
Dvoráková Z, Renciuk D, Kejnovská I, Školáková P, Bednárová K, Sagi J, Vorlícková M. i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions. Nucleic Acids Res 2019; 46:1624-1634. [PMID: 29378012 PMCID: PMC5829569 DOI: 10.1093/nar/gky035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/15/2018] [Indexed: 12/01/2022] Open
Abstract
i-Motif (iM) is a four stranded DNA structure formed by cytosine-rich sequences, which are often present in functionally important parts of the genome such as promoters of genes and telomeres. Using electronic circular dichroism and UV absorption spectroscopies and electrophoretic methods, we examined the effect of four naturally occurring DNA base lesions on the folding and stability of the iM formed by the human telomere DNA sequence (C3TAA)3C3T. The results demonstrate that the TAA loop lesions, the apurinic site and 8-oxoadenine substituting for adenine, and the 5-hydroxymethyluracil substituting for thymine only marginally disturb the formation of iM. The presence of uracil, which is formed by enzymatic or spontaneous deamination of cytosine, shifts iM formation towards substantially more acidic pH values and simultaneously distinctly reduces iM stability. This effect depends on the position of the damage sites in the sequence. The results have enabled us to formulate additional rules for iM formation.
Collapse
Affiliation(s)
- Zuzana Dvoráková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Daniel Renciuk
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Iva Kejnovská
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petra Školáková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Klára Bednárová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| | - Michaela Vorlícková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
19
|
Fleming AM, Stewart KM, Eyring GM, Ball TE, Burrows CJ. Unraveling the 4n - 1 rule for DNA i-motif stability: base pairs vs. loop lengths. Org Biomol Chem 2019; 16:4537-4546. [PMID: 29873385 DOI: 10.1039/c8ob01198b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previously our laboratory identified that poly-2'-deoxycytidine (dCn) strands of DNA with lengths greater than 12 nucleotides could adopt i-motif folds, while the pH-dependent stabilities follow a 4n - 1 repeat pattern with respect to chain length (J. Am. Chem. Soc., 2017, 139, 4682-4689). Herein, model i-motif folds in which loop configurations were forced by judiciously mutating dC to non-dC nucleotides allowed a structural model to be proposed to address this phenomenon. The model was developed by systematically studying two i-motifs with either an even or odd number of d(C·C)+ hemiprotonated base pairs in the core. First, a trend in the pH-dependent stability vs. loop nucleotide identity was observed: dC > dT ∼ dU ≫ dA ∼ dG. Next, loops comprised of dT nucleotides in the two different core base pair configurations were studied while systematically changing the loop lengths. We found that an i-motif with an even number of base pairs in the core with a single nucleotide in each of the three loops was the most stable, as well as an i-motif with an odd number of core base pairs having one nucleotide in the two exterior loops and three nucleotides in the central loop. A systematic increase in the central loop from 1-4 nucleotides for an odd number of base pairs in the i-motif core reproduced the 4n - 1 repeat pattern observed in the poly-dCn strands. Additional loop configurations were studied to further support the model. The results are discussed with respect to their biological relevance.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, 315 S. 1400 East. and University of Utah, Salt Lake City, UT 84112-0850, USA.
| | | | | | | | | |
Collapse
|
20
|
Adam C, Olmos JM, Doneux T. Electrochemical Monitoring of the Reversible Folding of Surface-Immobilized DNA i-Motifs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3112-3118. [PMID: 29481095 DOI: 10.1021/acs.langmuir.7b04088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two cytosine (C) rich DNA sequences folding in i-motif upon protonation of C at low pH have been immobilized at gold electrodes to study the impact of the electrode|electrolyte interface on the stability of the noncanonical DNA secondary structure. The effects of the molecular composition and environment on the melting and folding of the structures immobilized at the gold surface have been compared to the properties of the DNA strands in solution. The DNA folding into i-motif upon protonation, both at the surface and in solution, results in a significant variation of the charge density which is monitored electrochemically through the electrostatic interactions between the DNA strand and the electroactive hexaammineruthenium(III). This method is shown to be sufficiently sensitive to distinguish hemiprotonated folded state and single strand unfolded state of i-motif. The pH of melting has been determined for both sequences in the bulk and at the gold|electrolyte interface. The results evidence a stabilizing effect of the interface on i-motif structure, whereby the pH of melting is higher for the sequences immobilized at the surface. The reversibility and precision of the electrochemical model described here allows a clear and simple characterization of DNA structures and does not require any labeling of the sequence.
Collapse
Affiliation(s)
- Catherine Adam
- Chimie Analytique et Chimie des Interfaces , Université libre de Bruxelles (ULB) , Boulevard du Triomphe, 2, CP255 , B-1050 Bruxelles , Belgium
| | - José Manuel Olmos
- Chimie Analytique et Chimie des Interfaces , Université libre de Bruxelles (ULB) , Boulevard du Triomphe, 2, CP255 , B-1050 Bruxelles , Belgium
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , 30100 Murcia , Spain
| | - Thomas Doneux
- Chimie Analytique et Chimie des Interfaces , Université libre de Bruxelles (ULB) , Boulevard du Triomphe, 2, CP255 , B-1050 Bruxelles , Belgium
| |
Collapse
|
21
|
Ishida R, Iwahashi H. Detection of protonated non-Watson-Crick base pairs using electrospray ionization mass spectrometry. J Biochem 2018; 163:215-222. [PMID: 29087477 DOI: 10.1093/jb/mvx073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Many studies have shown that protonated nucleic acid base pairs are involved in a wide variety of nucleic acid structures. However, little information is available on relative stability of hemiprotonated self- and non-self-dimers at monomer level. We used electrospray ionization mass spectrometry (ESI-MS) to evaluate the relative stability under various concentrations of hydrogen ion. These enable conjecture of the formation of protonated non-Watson-Crick base pairs based on DNA and RNA base sequence. In the present study, we observed that ESI-MS peaks corresponded to respective self-dimers for all examined nucleosides except for adenosine. Peak heights depended on the concentration of hydrogen ion. The ESI-MS peak heights of the hemiprotonated cytidine dimers and the hemiprotonated thymidine dimer sharply increased with increased concentration of hydrogen ion, suggesting direct participation of hydrogen ion in dimer formations. In ESI-MS measurements of the solutions containing adenosine, cytidine, thymidine and guanosine, we observed protonated cytidine-guanosine dimer (CH+-G) and protonated cytidine-thymidine dimer (CH+-T) in addition to hemiprotonated cytidine-cytidine dimer (CH+-C) with following relative peak height, (CH+-C) > (CH+-G) ≈ (CH+-T) > (CH+-A). Additionally, in the ESI-MS measurements of solutions containing adenosine, thymidine and guanosine, we observed a considerable amount of protonated adenosine-guanosine (AH+-G) and protonated adenosine-thymidine (AH+-T).
Collapse
Affiliation(s)
- Riyoko Ishida
- Analytical Biochemistry, Wakayama Medical University, 580 Mikazura, Wakayama, Wakayama 641-0011, Japan
| | - Hideo Iwahashi
- Analytical Biochemistry, Wakayama Medical University, 580 Mikazura, Wakayama, Wakayama 641-0011, Japan
| |
Collapse
|
22
|
Ren W, Zheng K, Liao C, Yang J, Zhao J. Charge evolution during the unfolding of a single DNA i-motif. Phys Chem Chem Phys 2018; 20:916-924. [PMID: 29230450 DOI: 10.1039/c7cp06235d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effective charge and evolution of single chains of a DNA i-motif during its unfolding process are investigated at the single molecule level. Using fluorescence correlation spectroscopy and photon counting histograms, the single chain dimensions and electrical potential of cytosine-rich human telomeric oligonucleotides are monitored, during their unfolding from the i-motif to the random coil state. It is discovered that the effective charge density of the DNA chain is very sensitive to conformation changes and the results remarkably expose the existence of an intermediate state of the unfolding process. A huge difference in pH value exists in the vicinity of the DNA chain and the bulk solution, depending on the salt concentration, as reflected by a down-shift in the pH value of unfolding. The presence of an external salt in the solution helps to stabilize the i-motif structure at low pH values due to the reduction of the effective charge density. It can also destabilize the folded structure in the pH range of the conformation transition due to the elevation of the local pH value, encouraging the deprotonation of the cytosine groups. These results provide new information for understanding the structure and stability of i-motif DNA, and its biological function, as well as the building blocks for smart nanomaterials.
Collapse
Affiliation(s)
- Weibin Ren
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
23
|
Nguyen T, Fraire C, Sheardy RD. Linking pH, Temperature, and K+ Concentration for DNA i-Motif Formation. J Phys Chem B 2017; 121:7872-7877. [DOI: 10.1021/acs.jpcb.7b06317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tra Nguyen
- Department of Chemistry and
Biochemistry, Texas Woman’s University, Denton, Texas 76204, United States
| | - Claudette Fraire
- Department of Chemistry and
Biochemistry, Texas Woman’s University, Denton, Texas 76204, United States
| | - Richard D. Sheardy
- Department of Chemistry and
Biochemistry, Texas Woman’s University, Denton, Texas 76204, United States
| |
Collapse
|
24
|
Fleming AM, Ding Y, Rogers RA, Zhu J, Zhu J, Burton AD, Carlisle CB, Burrows CJ. 4n-1 Is a "Sweet Spot" in DNA i-Motif Folding of 2'-Deoxycytidine Homopolymers. J Am Chem Soc 2017; 139:4682-4689. [PMID: 28290680 DOI: 10.1021/jacs.6b10117] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Strands of DNA with four or more contiguous runs of 2'-deoxycytidine (dC) nucleotides have the potential to adopt i-motif folds, generally under mildly acidic conditions. Analysis of dC homo-oligonucleotide strands ranging in length from 10 to 30 nucleotides by five different pH-dependent methods identified a pattern in strand length vs stability. Beginning with dC11, which does not fold, the transition pH (pHT) increased with chain length with the addition of up to four nucleotides, after which the stability dramatically decreased, and the trend repeated this cycle up to dC27. The analysis found dCn strands of length 15, 19, 23, and 27 nucleotides (i.e., 4n-1) to have pHT values >7.2 and thermal stabilities >37 °C at pH 7.0. Model studies using thymidine nucleotides to lock in i-motif loop lengths support the conclusion that the most stable dCn i-motifs possess one nucleotide in each of the three loops and a core built of an even number of base pairs. The pattern identified from the model studies occurs with a frequency of four nucleotides at lengths of 15, 19, 23, and 27 in accordance with the results obtained for the dCn strands. This observation led us to interrogate the human genome for dCn runs. Inspection of the human genome indicates that dCn runs are enriched in critical regions of the genome (promoters, UTRs, and introns), while being depleted in coding and intergenic regions, and these findings may have biological implications. Lastly, the ability to tune i-motif stabilities by the length of the strand might be harnessed for stimulus-responsive applications in DNA scaffolds, sensors, nanotechnology, and other chemical applications.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yun Ding
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - R Aaron Rogers
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Judy Zhu
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Julia Zhu
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Ashlee D Burton
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Connor B Carlisle
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|