1
|
Kolmangadi MA, Wani YM, Schönhals A, Nikoubashman A. Coarse-Grained Simulations of Columnar Ionic Liquid Crystals: Comparison with Experiments. J Phys Chem B 2024; 128:8215-8222. [PMID: 39163525 DOI: 10.1021/acs.jpcb.4c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
We simulate a homologous series of guanidinium-based columnar ionic liquid crystals (ILCs) using coarse-grained molecular dynamics (MD) simulations with the Martini force field. We systematically vary the length of alkyl side chains, ILC-n (n = 8, 12, 16), and compare our results with previous experimental findings. Experimentally, ILC-8 exhibits a narrow mesophase window and weak columnar order, while ILC-12 and ILC-16 display a broad mesophase window and high columnar order. The MD simulations show that ILC-8 forms a percolated structure, whereas the longer chain analogues self-assemble into columns, with columnar assembly becoming more prominent as the side chain length increases, in qualitative agreement with the experiments. Furthermore, the intercolumnar distance increases monotonically with increasing side chain length and decreases with increasing temperature. Finally, we find that the diffusion coefficient and ionic conductivity decrease substantially with increasing chain length, consistent with experimental observations. We attribute this decrease in mobility to the formation of hexagonally ordered columns, which restrict transport more than percolated networks.
Collapse
Affiliation(s)
- Mohamed A Kolmangadi
- Bundesantalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Yashraj M Wani
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Andreas Schönhals
- Bundesantalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
2
|
Hosseini AN, van der Spoel D. Martini on the Rocks: Can a Coarse-Grained Force Field Model Crystals? J Phys Chem Lett 2024; 15:1079-1088. [PMID: 38261634 PMCID: PMC10839907 DOI: 10.1021/acs.jpclett.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Computational chemistry is an important tool in numerous scientific disciplines, including drug discovery and structural biology. Coarse-grained models offer simple representations of molecular systems that enable simulations of large-scale systems. Because there has been an increase in the adoption of such models for simulations of biomolecular systems, critical evaluation is warranted. Here, the stability of the amyloid peptide and organic crystals is evaluated using the Martini 3 coarse-grained force field. The crystals change shape drastically during the simulations. Radial distribution functions show that the distance between backbone beads in β-sheets increases by ∼1 Å, breaking the crystals. The melting points of organic compounds are much too low in the Martini force field. This suggests that Martini 3 lacks the specific interactions needed to accurately simulate peptides or organic crystals without imposing artificial restraints. The problems may be exacerbated by the use of the 12-6 potential, suggesting that a softer potential could improve this model for crystal simulations.
Collapse
Affiliation(s)
- A. Najla Hosseini
- Department of Cell and Molecular
Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Department of Cell and Molecular
Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
3
|
Effect of PCL-b-PEG Oligomer Containing Ionic Elements on Phase Interfacial Properties and Aggregated Structure of PLA/PCL Blends. Macromol Res 2022. [DOI: 10.1007/s13233-022-0058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Komatsu H, Tanaka M, Kaminaga K, Maruyama S, Matsumoto Y. Electric Double Layer Action of High-quality Ionic Liquid Crystal Thin Films. CHEM LETT 2021. [DOI: 10.1246/cl.210692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Haruka Komatsu
- Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai, Miyagi 980-8579
| | - Miyuki Tanaka
- Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai, Miyagi 980-8579
| | - Kenichi Kaminaga
- Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai, Miyagi 980-8579
| | - Shingo Maruyama
- Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai, Miyagi 980-8579
| | - Yuji Matsumoto
- Department of Applied Chemistry, School of Engineering, Tohoku University, Sendai, Miyagi 980-8579
| |
Collapse
|
5
|
Kapernaum N, Lange A, Ebert M, Grunwald MA, Haege C, Marino S, Zens A, Taubert A, Giesselmann F, Laschat S. Current Topics in Ionic Liquid Crystals. Chempluschem 2021; 87:e202100397. [PMID: 34931472 DOI: 10.1002/cplu.202100397] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/10/2021] [Indexed: 12/20/2022]
Abstract
Ionic liquid crystals (ILCs), that is, ionic liquids exhibiting mesomorphism, liquid crystalline phases, and anisotropic properties, have received intense attention in the past years. Among others, this is due to their special properties arising from the combination of properties stemming from ionic liquids and from liquid crystalline arrangements. Besides interesting fundamental aspects, ILCs have been claimed to have tremendous application potential that again arises from the combination of properties and architectures that are not accessible otherwise, or at least not accessible easily by other strategies. The current review highlights recent developments in ILC research, starting with some key fundamental aspects. Further subjects covered include the synthesis and variations of modern ILCs, including the specific tuning of their mesomorphic behavior. The review concludes with reflections on some applications that may be within reach for ILCs and finally highlights a few key challenges that must be overcome prior and during true commercialization of ILCs.
Collapse
Affiliation(s)
- Nadia Kapernaum
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Alyna Lange
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Golm, Germany
| | - Max Ebert
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Marco A Grunwald
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Christian Haege
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Sebastian Marino
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Andreas Taubert
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Golm, Germany
| | - Frank Giesselmann
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
6
|
Saielli G. The effect of hydration on the stability of ionic liquid crystals: MD simulations of [C 14C 1im]Cl and [C 14C 1im]Cl·H 2O. Phys Chem Chem Phys 2021; 23:24386-24395. [PMID: 34676847 DOI: 10.1039/d1cp03757a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The thermal range of the stability of Ionic Liquid Crystal (ILC) phases of imidazolium ILCs, and the type of the mesophase itself are affected by several molecular structural features, the two prominent ones being the alkyl chain length and the counter-anion. Hydration is also very important: monohydrate samples of 1-alkyl-3-methylimidazolium halides have a higher clearing point and a wider thermal range of the stability of the ionic smectic phase, compared with the analogous anhydrous sample. To understand the reasons, at a microscopic level, for such increased stability due to hydration, we run classical Molecular Dynamics (MD) simulations of a typical ionic liquid crystal, 1-tetradecyl-3-methylimidazolium chloride, and of its monohydrate form. We tested a full-charge non-polarizable force field and a scaled-charge version having the total charge of the ions scaled by a factor of 0.80. Comparison of the structural and dynamic properties with available experimental data reveals that the scaling of the charge by a factor of 0.80 results in a good agreement between simulated and experimental data and it sheds light on the microscopic mechanism responsible for the increased stability of the monohydrated phase. A hydrogen-bond network between water and the chloride anion is established in the ionic layer which increases the stability of the ionic layer; this in turn increases the nano-segregation between the ionic and hydrophobic layers which eventually produce an increased order of the alkylic layer as well.
Collapse
Affiliation(s)
- Giacomo Saielli
- CNR Institute on Membrane Technology, Padova Section, Via Marzolo, 1-35131 Padova, Italy. .,Department of Chemical Sciences, University of Padova, Via Marzolo, 1-35131 - Padova, Italy
| |
Collapse
|
7
|
Wang YL, Li B, Laaksonen A. Coarse-grained simulations of ionic liquid materials: from monomeric ionic liquids to ionic liquid crystals and polymeric ionic liquids. Phys Chem Chem Phys 2021; 23:19435-19456. [PMID: 34524303 DOI: 10.1039/d1cp02662c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ionic liquid (IL) materials are promising electrolytes with striking physicochemical properties for energy and environmental applications. Heterogeneous structures and transport quantities of monomeric and polymeric ILs are intrinsically intercorrelated and span multiple spatiotemporal scales, which is more feasible for coarse-grained (CG) simulations than atomistic modelling. Herein we constructed a novel CG model for ethyl-imidazolium tetrafluoroborate ILs with varied cation alkyl chains ranging from C2 to C20, and the interaction parameters were validated against representative static and dynamic properties that were obtained from atomistic reference simulations and experimental characterizations at relevant thermodynamic states. This CG model was extended to study thermotropic phase behaviors of monomeric ILs and to explore ion association structures and ion transport quantities in polymeric ILs with different architectures. A systematic analysis of structural and dynamical quantities identifies an evolution of liquid morphology from homogeneous to nanosegregated structures and then a smectic mesomorphism via a gradual lengthening of cation alkyl chains, and thereafter a distinct structural transition characterized by a monotonic decrease in orientational and translational order parameters in a sequential heating cascade. Backbone and pendant polymeric ILs exhibit evident anion association structures with cation monomers and polymer chains, and striking intra- and interchain coordinations between cation monomers owing to an intrinsic polymer architecture effect. Such a peculiar ion pairing association leads to a progressive increase in anion intrachain hopping probabilities, and a concomitant decrease in anion interchain hopping events with a gradual lengthening of polymeric ILs. The anion diffusivities in polymeric ILs are intrinsically correlated with ion pairing association lifetimes and ion structural relaxation times via a universal power law correlation D ∼ τ-1, irrespective of polymer architectures.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden. .,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
8
|
Liu M, Shiba H, Liu H, Peng H. Molecular-dynamics simulations on the mesophase transition induced by oscillatory shear in imidazolium-based ionic liquid crystals. Phys Chem Chem Phys 2021; 23:6496-6508. [PMID: 33688864 DOI: 10.1039/d0cp05677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations were performed on a 1-dodecyl-3-methylimidazolium hexafluorophosphate ([C12mim][PF6]) ionic liquid crystal (ILC) with the application of an oscillatory shear. We found that the oscillatory shear can both accelerate and suppress mesophase formation depending on shear amplitude. A small amplitude shear can speed up the mesophase transition dynamics and result in a more ordered mesomorphic structure than that without shear, i.e., an effect of accelerated aging. The mesophase is destabilized when the shear amplitude is large enough, resulting in a smectic A (SmA) to liquid or a smectic B (SmB) to SmA transition, with the mesophase behaviour summarized in an out-of-equilibrium phase diagram. Inside the layer plane a medium-range hexatic order was observed, with the correlation length extending to several nanometres in the shear-induced SmA phase. We rationalize the nonequilibrium mesophase behaviour from the rheology of isotropic liquids, finding a temperature-independent critical relaxation time for the mesophase transition in the translational or rotational dynamics. This finding can be used to predict the mesophase behaviour in the sheared ILCs from the rheology of isotropic liquids.
Collapse
Affiliation(s)
- Min Liu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China.
| | | | | | | |
Collapse
|
9
|
Majhi D, Dvinskikh SV. Ion conformation and orientational order in a dicationic ionic liquid crystal studied by solid-state nuclear magnetic resonance spectroscopy. Sci Rep 2021; 11:5985. [PMID: 33727569 PMCID: PMC7971035 DOI: 10.1038/s41598-021-85021-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 11/09/2022] Open
Abstract
Ionic liquids crystals belong to a special class of ionic liquids that exhibit thermotropic liquid-crystalline behavior. Recently, dicationic ionic liquid crystals have been reported with a cation containing two single-charged ions covalently linked by a spacer. In ionic liquid crystals, electrostatic and hydrogen bonding interactions in ionic sublayer and van der Waals interaction in hydrophobic domains are the main forces contributing to the mesophase stabilization and determining the molecular orientational order and conformation. How these properties in dicationic materials are compared to those in conventional monocationic analogs? We address this question using a combination of advanced NMR methods and DFT analysis. Dicationic salt 3,3′-(1,6-hexanediyl)bis(1-dodecylimidazolium)dibromide was studied. Local bond order parameters of flexible alkyl side chains, linker chain, and alignment of rigid polar groups were analyzed. The dynamic spacer effectively “decouples” the motion of two ionic moieties. Hence, local order and alignment in dicationic mesophase were similar to those in analogous single-chain monocationic salts. Bond order parameters in the side chains in the dicationic smectic phase were found consistently lower compared to double-chain monocationic analogs, suggesting decreasing contribution of van der Waals forces. Overall dication reorientation in the smectic phase was characterized by low values of orientational order parameter S. With increased interaction energy in the polar domain the layered structure is stabilized despite less ordered dications. The results emphasized the trends in the orientational order in ionic liquid crystals and contributed to a better understanding of interparticle interactions driving smectic assembly in this and analogous ionic mesogens.
Collapse
Affiliation(s)
- Debashis Majhi
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden. .,School of Chemistry, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel.
| | - Sergey V Dvinskikh
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden. .,Laboratory of Biomolecular NMR, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
| |
Collapse
|
10
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Cao W, Senthilkumar B, Causin V, Swamy VP, Wang Y, Saielli G. Influence of the ion size on the stability of the smectic phase of ionic liquid crystals. SOFT MATTER 2020; 16:411-420. [PMID: 31789337 DOI: 10.1039/c9sm02115a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The thermotropic phase behavior of ionic liquids and ionic liquid crystals based on novel N-alkyl-3-methylpyridinium halides, trihalides and dichloroiodates was experimentally studied by polarized optical spectroscopy (POM) and differential scanning calorimetry (DSC) as well as by molecular dynamics (MD) simulation. In the experiments, the existence and thermal range of stability of the smectic phase of these ionic liquid crystals are found to strongly depend on the volume ratio between the cation and anion, that is their relative size. Only compounds with a relatively large volume ratio of the cation to anion, i.e., those with longer cationic alkyl chains and monoatomic halide anions, have a stable smectic A phase. Both melting points and clearing points increase with such a ratio. The MD simulation results qualitatively agree very well with the experimental data and provide molecular details which can explain the experimentally observed phenomena: the stronger van der Waals interactions from the longer alkyl chains and the stronger electrostatic interactions from the smaller anions with a higher charge density increase the stability of both the crystal phase and the smectic phase; this also prevents the ionic layers from easily mixing with the hydrophobic regions, a mechanism that ultimately leads to a nanosegregated isotropic liquid phase.
Collapse
Affiliation(s)
- Wudi Cao
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, P. O. Box 2735, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Michael P. Allen
- Department of Physics, University of Warwick, Coventry, UK
- H. H. Wills Physics Laboratory, Royal Fort, Bristol, UK
| |
Collapse
|
13
|
Phase Behaviors of Ionic Liquids Heating from Different Crystal Polymorphs toward the Same Smectic-A Ionic Liquid Crystal by Molecular Dynamics Simulation. CRYSTALS 2019. [DOI: 10.3390/cryst9010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Five distinct crystal structures, based on experimental data or constructed manually, of ionic liquid [C14Mim][NO3] were heated in NPT molecular dynamics simulations under the same pressure such that they melted into the liquid crystal (LC) phase and then into the liquid phase. It was found that the more entropy-favored structure had a higher solid-LC transition temperature: Before the transition into the LC, all systems had to go through a metastable state with the side chains almost perpendicular to the polar layers. All those crystals finally melted into the same smectic-A LC structure irrelevant of the initial crystal structure.
Collapse
|
14
|
Nemoto F, Kofu M, Nagao M, Ohishi K, Takata SI, Suzuki JI, Yamada T, Shibata K, Ueki T, Kitazawa Y, Watanabe M, Yamamuro O. Neutron scattering studies on short- and long-range layer structures and related dynamics in imidazolium-based ionic liquids. J Chem Phys 2018; 149:054502. [PMID: 30089384 DOI: 10.1063/1.5037217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alkyl-methyl-imidazolium ionic liquids CnmimX (n: alkyl-carbon number, X: anion) have short-range layer structures consisting of ionic and neutral (alkylchain) domains. To investigate the temperature dependences of the interlayer, interionic group, and inter-alkylchain correlations, we have measured the neutron diffraction (ND) of C16mimPF6, C9.5mimPF6, and C8mimPF6 in the temperature region from 4 K to 470 K. The quasielastic neutron scattering (QENS) of C16mimPF6 was also measured to study the dynamics of each correlation. C16mimPF6 shows a first-order transition between the liquid (L) and liquid crystalline (LC) phases at Tc = 394 K. C8mimPF6 exhibits a glass transition at Tg = 200 K. C9.5mimPF6, which is a 1:3 mixture between C8mimPF6 and C10mimPF6, has both transitions at Tc = 225 K and Tg = 203 K. In the ND experiments, all samples exhibit three peaks corresponding to the correlations mentioned above. The widths of the interlayer peak at ca. 0.2 Å-1 changed drastically at the L-LC transitions, while the interionic peaks at ca. 1 Å-1 exhibited a small jump at Tc. The peak position and area of the three peaks did not change much at the transition. The structural changes were minimal at Tg. The QENS experiments demonstrated that the relaxation time of the interlayer motion increased tenfold at Tc, while those of other motions were monotonous in the whole temperature region. The structural and dynamical changes mentioned above are characteristic of the L-LC transition in imidazolium-based ionic liquids.
Collapse
Affiliation(s)
- Fumiya Nemoto
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Maiko Kofu
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899-6102, USA
| | - Kazuki Ohishi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), IQBRC Bldg., 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Shin-Ichi Takata
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195, Japan
| | - Jun-Ichi Suzuki
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), IQBRC Bldg., 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), IQBRC Bldg., 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Kaoru Shibata
- J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195, Japan
| | - Takeshi Ueki
- Department of Materials Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yuzo Kitazawa
- Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
| | - Masayoshi Watanabe
- Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
| | - Osamu Yamamuro
- Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
15
|
Peng H, Kubo M, Shiba H. Molecular dynamics study of mesophase transitions upon annealing of imidazolium-based ionic liquids with long-alkyl chains. Phys Chem Chem Phys 2018; 20:9796-9805. [PMID: 29620128 DOI: 10.1039/c8cp00698a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations are performed on a 1-dodecyl-3-methylimidazolium hexafluorophosphate ([C12mim][PF6]) ionic liquid using a united-atom model. The ionic liquid exhibits second step relaxation at temperatures below a crossover point, where the diffusion coefficient shows an Arrhenius to non-Arrhenius transition. Annealing below this crossover temperature makes an isotropic to mesophase transition, where the smectic A (SmA) phase or crystal-like smectic B (SmB) phase forms. Hundreds of nanoseconds are required for completing these transitions. A normal diffusion process is found for anions along the layer-normal and -lateral directions in the SmA phase, but only in the lateral directions in the SmB phase. We find a preserved orientational order for the imidazolium-ring rotational and the alkyl-chain reorientational dynamics in both of the smectic phases.
Collapse
Affiliation(s)
- Hailong Peng
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
| | | | | |
Collapse
|
16
|
Mars J, Hou B, Weiss H, Li H, Konovalov O, Festersen S, Murphy BM, Rütt U, Bier M, Mezger M. Surface induced smectic order in ionic liquids - an X-ray reflectivity study of [C 22C 1im] +[NTf 2] . Phys Chem Chem Phys 2018; 19:26651-26661. [PMID: 28960006 DOI: 10.1039/c7cp04852a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Surface induced smectic order was found for the ionic liquid 1-methyl-3-docosylimidazolium bis(trifluoromethlysulfonyl)imide by X-ray reflectivity and grazing incidence scattering experiments. Near the free liquid surface, an ordered structure of alternating layers composed of polar and non-polar moieties is observed. This leads to an oscillatory interfacial profile perpendicular to the liquid surface with a periodicity of 3.7 nm. Small angle X-ray scattering and polarized light microscopy measurements suggest that the observed surface structure is related to fluctuations into a metastable liquid crystalline SmA2 phase that was found by supercooling the bulk liquid. The observed surface ordering persists up to 157 °C, i.e. more than 88 K above the bulk melting temperature of 68.1 °C. Close to the bulk melting point, we find a thickness of the ordered layer of L = 30 nm. The dependency of L(τ) = Λ ln(τ/τ1) vs. reduced temperature τ follows a logarithmic growth law. In agreement with theory, the pre-factor Λ is governed by the correlation length of the isotropic bulk phase.
Collapse
Affiliation(s)
- Julian Mars
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang P, Xu P, Wei H, Fang H, Ding Y. Effect of block copolymer containing ionic liquid moiety on interfacial polarization in PLA/PCL blends. J Appl Polym Sci 2018. [DOI: 10.1002/app.46161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ping Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei University of Technology; Hefei 230009 China
| | - Pei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei University of Technology; Hefei 230009 China
| | - Haibing Wei
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei University of Technology; Hefei 230009 China
| | - Huagao Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei University of Technology; Hefei 230009 China
| | - Yunsheng Ding
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei University of Technology; Hefei 230009 China
| |
Collapse
|
18
|
Saielli G, Margola T, Satoh K. Tuning Coulombic interactions to stabilize nematic and smectic ionic liquid crystal phases in mixtures of charged soft ellipsoids and spheres. SOFT MATTER 2017; 13:5204-5213. [PMID: 28671229 DOI: 10.1039/c7sm00612h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have investigated the effect of electrostatic interactions in mixtures of soft ellipsoids and spheres based on the well-known Gay-Berne (GB) and Lennard-Jones (LJ) potential, respectively. These model systems, in their original version, that is without any electrostatic charge, have been thoroughly investigated in the literature both as pure components and mixtures. In particular, mixtures of particles of different shapes, such as spheres and ellipsoids, tend to phase separate because of the excluded volume effects. Common ionic liquid crystals, based on imidazolium or other quaternary ammonium salts, are usually composed of roughly elongated (although flexible) cations and roughly spherical anions, that is, particles with a similar shape such as the GB and LJ models. Therefore, in this work, we present the results of molecular dynamics simulations of mixtures of positively charged GB and negatively charged LJ particles as models of ionic liquid crystals. Interestingly, by modulating the charge of the particles it is possible to stabilize isotropic, nematic, smectic and crystalline ionic phases. The relative weight of Coulomb (a radial, therefore isotropic interaction) and van der Waals (an anisotropic interaction) contributions is a key parameter to tune the stability of various mesophases.
Collapse
Affiliation(s)
- Giacomo Saielli
- Istituto per la Tecnologia delle Membrane del CNR (ITM-CNR), Sede Secondaria di Padova, Via Marzolo, 1-35131, Padova, Italy.
| | | | | |
Collapse
|
19
|
Zheng L, Yang LL, Xing NN, Pan Y, Ji HX, Wei J, Guan W. Highly selective detection of nitrotoluene based on novel lanthanide-containing ionic liquids. RSC Adv 2017. [DOI: 10.1039/c7ra06300h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two novel rare-earth ionic liquids demonstrate high selectivity toward nitrotoluene in the presence of other aromatic compounds.
Collapse
Affiliation(s)
- Ling Zheng
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Li-Li Yang
- School of Environmental Science
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Nan-Nan Xing
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yi Pan
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Hong-Xiang Ji
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Jie Wei
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Wei Guan
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
- School of Environmental Science
| |
Collapse
|