1
|
Adachi T, Tahara Y, Yamamoto K, Yamamoto T, Kanamura N, Akiyoshi K, Mazda O. Cholesterol-Bearing Polysaccharide-Based Nanogels for Development of Novel Immunotherapy and Regenerative Medicine. Gels 2024; 10:206. [PMID: 38534624 DOI: 10.3390/gels10030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Novel functional biomaterials are expected to bring about breakthroughs in developing immunotherapy and regenerative medicine through their application as drug delivery systems and scaffolds. Nanogels are defined as nanoparticles with a particle size of 100 nm or less and as having a gel structure. Nanogels have a three-dimensional network structure of cross-linked polymer chains, which have a high water content, a volume phase transition much faster than that of a macrogel, and a quick response to external stimuli. As it is possible to transmit substances according to the three-dimensional mesh size of the gel, a major feature is that relatively large substances, such as proteins and nucleic acids, can be taken into the gel. Furthermore, by organizing nanogels as a building block, they can be applied as a scaffold material for tissue regeneration. This review provides a brief overview of the current developments in nanogels in general, especially drug delivery, therapeutic applications, and tissue engineering. In particular, polysaccharide-based nanogels are interesting because they have excellent complexation properties and are highly biocompatible.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyoto-fu, Kyotanabe-shi 610-0321, Japan
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Nanogels for the solubility enhancement of water-insoluble drugs. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
3
|
Nishimura T, Fujii S, Sakurai K, Sasaki Y, Akiyoshi K. Manipulating the Morphology of Amphiphilic Graft-Copolymer Assemblies by Adjusting the Flexibility of the Main Chain. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1, Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Torres-Martínez A, Angulo-Pachón CA, Galindo F, Miravet JF. In between molecules and self-assembled fibrillar networks: highly stable nanogel particles from a low molecular weight hydrogelator. SOFT MATTER 2019; 15:3565-3572. [PMID: 30951068 DOI: 10.1039/c9sm00252a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The preparation of molecular, non-polymeric nanogels from a low molecular weight hydrogelator is reported. The molecular nanogels are expected to overcome issues associated with the use of polymeric nanogels in biomedicine such as biodegradability, stimuli responsiveness, polydispersity, and batch-to-batch reproducibility. Nanogels formed by compound 1 were reproducibly prepared by sonication of a xerogel in PBS, with a total concentration of ca. 2 mM. The intensity averaged diameter of ca. 200 nm was determined by DLS. Electron microscopy (TEM and cryo-TEM) showed spherical particles. Light scattering (SALS) indicates that water is the main component of the nanoparticles, and the concentration of 1 in the nanogels is ca. 3 mg mL-1. These particles can be considered to constitute an intermediate state between free molecules and self-assembled fibrillar networks. The nanogels present excellent temporal and thermal stability and accessible hydrophobic domains, as demonstrated by the incorporation of the fluorescent dye Nile Red.
Collapse
Affiliation(s)
- Ana Torres-Martínez
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castelló, Spain.
| | | | | | | |
Collapse
|
5
|
Hashimoto Y, Mukai S, Sasaki Y, Akiyoshi K. Nanogel Tectonics for Tissue Engineering: Protein Delivery Systems with Nanogel Chaperones. Adv Healthc Mater 2018; 7:e1800729. [PMID: 30221496 DOI: 10.1002/adhm.201800729] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/12/2018] [Indexed: 12/15/2022]
Abstract
Amphiphilic polysaccharide self-assembled (SA) nanogels are promising protein carriers owing to their chaperone-like activity that allows them to nanoencapsulate proteins within their polymer networks. The chaperoning function is an important concept that has led to breakthroughs in the development of effective protein drug delivery systems by stabilizing formulations and controlling the quality of unstable proteins. Recently, nanogel-tectonic materials that integrate SA nanogels as building blocks have been designed as new hydrogel biomaterials. This article describes recent progress and applications of SA nanogel tectonic materials as protein delivery systems for tissue engineering.
Collapse
Affiliation(s)
- Yoshihide Hashimoto
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo‐ku Kyoto 615‐8510 Japan
- Japan Science and Technology Agency (JST) The Exploratory Research for Advanced Technology (ERATO) Bio‐Nanotransporter Project Katsura Int'tech Center Katsura, Nishikyo‐ku Kyoto 615‐8530 Japan
- Department of Material‐based Medical Engineering Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2‐3‐10 Kanda‐Surugadai Chiyoda‐ku Tokyo 101‐0062 Japan
| | - Sada‐atsu Mukai
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo‐ku Kyoto 615‐8510 Japan
- Japan Science and Technology Agency (JST) The Exploratory Research for Advanced Technology (ERATO) Bio‐Nanotransporter Project Katsura Int'tech Center Katsura, Nishikyo‐ku Kyoto 615‐8530 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo‐ku Kyoto 615‐8510 Japan
- Japan Science and Technology Agency (JST) The Exploratory Research for Advanced Technology (ERATO) Bio‐Nanotransporter Project Katsura Int'tech Center Katsura, Nishikyo‐ku Kyoto 615‐8530 Japan
| |
Collapse
|
6
|
Zhang T, Yang R, Yang S, Guan J, Zhang D, Ma Y, Liu H. Research progress of self-assembled nanogel and hybrid hydrogel systems based on pullulan derivatives. Drug Deliv 2018; 25:278-292. [PMID: 29334800 PMCID: PMC6058595 DOI: 10.1080/10717544.2018.1425776] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/29/2023] Open
Abstract
Polymer nano-sized hydrogels (nanogels) as drug delivery carriers have been investigated over the last few decades. Pullulan, a nontoxic and nonimmunogenic hydrophilic polysaccharide derived from fermentation of black yeast like Aureobasidium pullulans with great biocompatibility and biodegradability, is one of the most attractive carriers for drug delivery systems. In this review, we describe the preparation, characterization, and 'switch-on/off' mechanism of typical pullulan self-assembled nanogels (self-nanogels), and then introduce the development of hybrid hydrogels that are numerous resources applied for regenerative medicine. A major section is used for biomedical applications of different nanogel systems based on modified pullulan, which exert smart stimuli-responses at ambient conditions such as charge, pH, temperature, light, and redox. Pullulan self-nanogels have found increasingly extensive application in protein delivery, tissue engineering, vaccine development, cancer therapy, and biological imaging. Functional groups are incorporated into self-nanogels and contribute to expressing desirable results such as targeting and modified release. Various molecules, especially insoluble or unstable drugs and encapsulated proteins, present improved solubility and bioavailability as well as reduced side effects when incorporated into self-nanogels. Finally, the advantages and disadvantages of pullulan self-nanogels will be analyzed accordingly, and the development of pullulan nanogel systems will be reviewed.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruyi Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shengnan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jibin Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Ma
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongzhuo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, Ahmad S, Nair M. Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics. Adv Healthc Mater 2018; 7:e1701213. [PMID: 29388356 PMCID: PMC6248342 DOI: 10.1002/adhm.201701213] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/21/2017] [Indexed: 12/21/2022]
Abstract
In spite of significant advancement in hydrogel technology, low mechanical strength and lack of electrical conductivity have limited their next-level biomedical applications for skeletal muscles, cardiac and neural cells. Host-guest chemistry based hybrid nanocomposites systems have gained attention as they completely overcome these pitfalls and generate bioscaffolds with tunable electrical and mechanical characteristics. In recent years, carbon nanotube (CNT)-based hybrid hydrogels have emerged as innovative candidates with diverse applications in regenerative medicines, tissue engineering, drug delivery devices, implantable devices, biosensing, and biorobotics. This article is an attempt to recapitulate the advancement in synthesis and characterization of hybrid hydrogels and provide deep insights toward their functioning and success as biomedical devices. The improved comparative performance and biocompatibility of CNT-hydrogels hybrids systems developed for targeted biomedical applications are addressed here. Recent updates toward diverse applications and limitations of CNT hybrid hydrogels is the strength of the review. This will provide a holistic approach toward understanding of CNT-based hydrogels and their applications in nanotheranostics.
Collapse
Affiliation(s)
- Arti Vashist
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Vidya Sagar
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Anujit Ghosal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Y. K. Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India, 110025
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
8
|
Nishimura T, Yamada A, Umezaki K, Sawada SI, Mukai SA, Sasaki Y, Akiyoshi K. Self-Assembled Polypeptide Nanogels with Enzymatically Transformable Surface as a Small Interfering RNA Delivery Platform. Biomacromolecules 2017; 18:3913-3923. [DOI: 10.1021/acs.biomac.7b00937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tomoki Nishimura
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Akina Yamada
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kaori Umezaki
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shin-ichi Sawada
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Sada-atsu Mukai
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| | - Yoshihiro Sasaki
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO
Bio-nanotransporter Project, Japan Science and Technology Agency (JST), Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|