1
|
Das A, Jana G, Sing S, Basu A. Insights into the interaction and inhibitory action of palmatine on lysozyme fibrillogenesis: Spectroscopic and computational studies. Int J Biol Macromol 2024; 268:131703. [PMID: 38643915 DOI: 10.1016/j.ijbiomac.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Interaction under amyloidogenic condition between naturally occurring protoberberine alkaloid palmatine and hen egg white lysozyme was executed by adopting spectrofluorometric and theoretical molecular docking and dynamic simulation analysis. In spetrofluorometric method, different types of experiments were performed to explore the overall mode and mechanism of interaction. Intrinsic fluorescence quenching of lysozyme (Trp residues) by palmatine showed effective binding interaction and also yielded different binding parameters like binding constant, quenching constant and number of binding sites. Synchronous fluorescence quenching and 3D fluorescence map revealed that palmatine was able to change the microenvironment of the interacting site. Fluorescence life time measurements strongly suggested that this interaction was basically static in nature. Molecular docking result matched with fluorimetric experimental data. Efficient drug like interaction of palmatine with lysozyme at low pH and high salt concentration prompted us to analyze its antifibrillation potential. Different assays and microscopic techniques were employed for detailed analysis of lysozyme amyloidosis.Thioflavin T(ThT) assay, Congo Red (CR) assay, 8-anilino-1-naphthalenesulfonic acid (ANS) assay, Nile Red (NR) assay, anisotropy and intrinsic fluorescence measurements confirmed that palmatine successfully retarded and reduced lysozyme fibrillation. Dynamic light scattering (DLS) and atomic force microscopy (AFM) further reiterated the excellent antiamyloidogenic potency of palmatine.
Collapse
Affiliation(s)
- Arindam Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Gouranga Jana
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
2
|
Jana G, Sing S, Das A, Basu A. Interaction of food colorant indigo carmine with human and bovine serum albumins: A multispectroscopic, calorimetric, and theoretical investigation. Int J Biol Macromol 2024; 259:129143. [PMID: 38176484 DOI: 10.1016/j.ijbiomac.2023.129143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
In this work we have studied the interaction of the food dye Indigo-Carmine (IndC) with the most studied model transport proteins i.e. human and bovine serum albumin (HSA & BSA). A multispectroscopic approach was used to analyze the details of the binding process. The intrinsic fluorescence of both the albumins was significantly quenched by IndC and the quenching was both static and dynamic in nature with the former being dominant. The HSA-lndC and BSA-IndC distance after complexation was determined by Förster resonance energy transfer (FRET) method which suggested efficient energy transfer from the albumins to IndC. Thermodynamics of serum protein-IndC complexation was estimated by isothermal titration calorimetry (ITC) which revealed that the binding was enthalpy driven. Circular dichroism (CD) and FTIR spectroscopy revealed that the binding of IndC induced secondary structural changes in both the serum proteins. Synchronous and 3D fluorescence spectroscopy revealed that the binding interaction caused microenvironmental changes of protein fluorophores. Molecular docking analysis suggested that hydrogen bonding and hydrophobic interactions are the major forces involved in the complexation process.
Collapse
Affiliation(s)
- Gouranga Jana
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Arindam Das
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
3
|
Li M, Zhou D, Wu D, Hu X, Hu J, Geng F, Cheng L. Comparative analysis of the interaction between alpha-lactalbumin and two edible azo colorants equipped with different sulfonyl group numbers. Food Chem 2023; 416:135826. [PMID: 36893641 DOI: 10.1016/j.foodchem.2023.135826] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/14/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Alpha-lactalbumin (α-La) is a crucial active component in whey protein. It would be mixed with edible azo pigments during processing. Spectroscopic analyses and computer simulations were used here to characterize the interaction between acid red 27 (C27) /acidic red B (FB) and α-La. Fluorescence, thermodynamics, and energy transfer showed the binding mechanism is a static quenching with a medium affinity. This binding process occurred spontaneously and was mainly driven by hydrophobic forces. Conformation analysis showed FB led to a greater change in the secondary structure of α-La compared with C27. C27 increased and FB decreased the surface hydrophobicity of α-La. The spatial structures of complexes were visualized with computer aid. The azo colorant binds to α-La easily and deeply with a smaller space volume and dipole moment and thereby affecting the α-La conformation and functionality. This study provides a theoretical basis for the application of edible azo pigments.
Collapse
Affiliation(s)
- Mohan Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dian Zhou
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Xia Hu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Hu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
4
|
Arsenault-Escobar S, Fuentes-Galvez JF, Orellana C, Bollo S, Sierra-Rosales P, Miranda-Rojas S. Unveiling the tartrazine binding mode with ds-DNA by UV-visible spectroscopy, electrochemical, and QM/MM methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122400. [PMID: 36739665 DOI: 10.1016/j.saa.2023.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Here, we studied the interaction between the food colorant tartrazine (TZ) and double stranded DNA (dsDNA), using spectroscopic, electrochemical, and computational methods such as QM/MM combined with TD-DFT. Despite the UV-vis spectroscopy is widely used to study the interaction between molecules, for the case of TZ there are discrepancies in the analyses presented in the literature available, presenting both hyperchromic and hypochromic effects and consequently different rationalizations for their results. Herein we propose the combination of UV-vis experiments with the design of high-level computational models capable of reproducing the experimental behavior to finally define the proper binding mode at the molecular scale together with the rationalization of the experimental optical response due to the complex formation. To complement the UV-vis experiments, we propose the use of electrochemical measurements, to support the results obtained through UV-vis spectroscopy, as it has been successfully used for the determination of interaction modes between small molecules and biomolecules in any condition. Our UV-vis spectroscopy experiments showed only a hypochromic effect of the absorption spectra of TZ after interaction with DNA, indicative of TZ being deeply buried in the DNA structure. The effect of ionic strength in the experimental procedures led to the dissociation of TZ, thus indicating that the interaction mode was groove binding. On the other hand, the electrochemical studies showed an irreversible reduction peak of TZ, which after the interaction with DNA exhibited a positive shift in potential that can be attributed to groove binding. The binding constant for TZ-DNA was calculated as 4.45x104M-1 (UV-vis) and 5.75x104M-1 (electrochemistry), in line with other groove binder azo dyes. Finally, through the QM/MM calculations we found that the minor-groove binding mode interacting in zones rich in adenine and thymine was the model best suited to reproduce the experimental UV-vis response.
Collapse
Affiliation(s)
- S Arsenault-Escobar
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín, Santiago, Chile
| | - J F Fuentes-Galvez
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín, Santiago, Chile
| | - C Orellana
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, P.O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - S Bollo
- Centro de Investigación de Procesos Redox (CiPRex), Universidad de Chile. Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile. Sergio Livingstone Polhammer 1007, Independencia, Santiago, Chile
| | - P Sierra-Rosales
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, P.O Box 8940577, San Joaquín, Santiago, Chile.
| | - S Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago, Chile.
| |
Collapse
|
5
|
Ali SM, Nabi F, Hisamuddin M, Rizvi I, Ahmad A, Hassan MN, Paul P, Chaari A, Khan RH. Evaluating the inhibitory potential of natural compound luteolin on human lysozyme fibrillation. Int J Biol Macromol 2023; 233:123623. [PMID: 36773857 DOI: 10.1016/j.ijbiomac.2023.123623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Numerous pathophysiological conditions known as amyloidosis, have been connected to protein misfolding leading to aggregation of proteins. Inhibition of cytotoxic aggregates or disaggregation of the preformed fibrils is thus one of the important strategies in the prevention of such diseases. Growing interest and exploration of identification of small molecules mainly natural compounds can prevent or delay amyloid fibril formation. We examined the mechanism of interaction and inhibition of human lysozyme (HL) aggregates with luteolin (LT). Biophysical and computational approaches have been employed to study the effect of LT on HL amyloid aggregation. Transmission Electronic Microscopy, Thioflavin T fluorescence, UV-vis spectroscopy, and RLS demonstrates that LT inhibit HL fibril formation. ANS fluorescence and hemolytic assay was also employed to examine the effect of the LT on toxicity of HL aggregation. Docking and molecular dynamics results showed that LT interacted with HL via hydrophobic and hydrogen interactions, thus reducing fibrillation levels. These findings highlight the benefit of polyphenols as safe therapy for preventing amyloid related diseases.
Collapse
Affiliation(s)
- Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Irum Rizvi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Azeem Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India.
| |
Collapse
|
6
|
Millan S, Susrisweta B, Sahoo H. Probing the interaction between niobium pentoxide nanoparticles and serum albumin proteins by Spectroscopic approaches. J Biomol Struct Dyn 2023; 41:15435-15445. [PMID: 36931873 DOI: 10.1080/07391102.2023.2188944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
Nanoparticles (NPs) can directly or indirectly enter into the body because of their small size; then they tend to alter the conformation and function of proteins upon interaction with them. Thus, it is crucial to understand the impact of NPs in a biological medium. Recently, niobium pentoxide nanoparticles (Nb2O5 NPs) are finding increasing applications in the biological system, for example, bone tissue and dental material, matrix for biosensing of proteins, etc. In all such applications, the Nb2O5 NP interacts with proteins and other biomolecules. Hence, the study of such interactions is of considerable importance. Here in this work, we present the impact of Nb2O5 NP on the structure, stability and activity of blood proteins, bovine serum albumin (BSA) and human serum albumin (HSA) by means of various spectroscopic approaches. Steady-state fluorescence studies indicated that intrinsic fluorescence intensities of both serum albumin proteins got quenched upon their interaction with NP. The nature of the quenching was elucidated by time-resolved fluorescence and absorption measurements. Using circular dichroism (CD) and synchronous fluorescence spectroscopy (SFS), the structural perturbations of the protein molecules after interaction with NP were investigated. Moreover, the role of temperature on protein stability upon complexation with NP was also explored. In addition, the effect of NP on protein functionality was probed by esterase-like activity assays.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sabera Millan
- Department of Chemistry, National Institute of Technology (NIT) Rourkela, Sundergarh, Odisha, India
| | - Behera Susrisweta
- Department of Chemistry, National Institute of Technology (NIT) Rourkela, Sundergarh, Odisha, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology (NIT) Rourkela, Sundergarh, Odisha, India
| |
Collapse
|
7
|
Hakeem MJ, Khan JM, Malik A, Husain FM, Alresaini SM, Ahmad A, Alam P. Molecular insight into the modulation of ovalbumin fibrillation by allura red dye at acidic pH. Int J Biol Macromol 2023; 230:123254. [PMID: 36641020 DOI: 10.1016/j.ijbiomac.2023.123254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The synthetic food additive dye induces amyloid fibrillation has many implications in the laboratory and industries. The effect of Allura red (AR), on the fibrillation of ovalbumin (Ova) at pH 2.0 was investigated. The influence of salt and pH was also seen on AR-induced Ova aggregation. We have used several spectroscopic and microscopy techniques to characterize the changes. The turbidity data suggest that concentrations above 0.05 mM of AR induce aggregation, and the size of aggregates increased in response to AR concentration. The kinetics data showed that the AR induces Ova aggregation quickly without lag time. The aggregates induced by AR have amyloid-like aggregates confirmed by far-UV CD and TEM. NaCl has very marginal effects in AR-induced aggregation. The turbidity results clearly state that Ova is not forming aggregates with pH above 4.0 due to electrostatic repulsion. However, Ova forms bigger aggregates in the presence of 0.5 mM AR at a pH below 4.0. These spectroscopic data suggest that the amyloid fibrillation that occurs in Ova is due to electrostatic and hydrophobic interaction. The amyloid fibrillation induced by AR dye in protein should be taken seriously for food safety purposes.
Collapse
Affiliation(s)
- Mohammed J Hakeem
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia.
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | | | - Aqeel Ahmad
- Department of Medical Biochemistry, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
8
|
Hakeem MJ, Khan JM, Malik A, Husain FM, Ambastha V. Role of salts and solvents on the defibrillation of food dye "sunset yellow" induced hen egg white lysozyme amyloid fibrils. Int J Biol Macromol 2022; 219:1351-1359. [PMID: 36058397 DOI: 10.1016/j.ijbiomac.2022.08.199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/05/2022]
Abstract
Several food dyes are known to induce amyloid fibrillation when interacting with proteins. Here, we studied the role of sunset yellow (SY) in the amyloid fibrillation of hen egg white lysozyme (HEWL) and characterized the changes using spectroscopy techniques. Turbidity results showed that SY dye induces aggregation in HEWL in concentrations dependent manner. The aggregation induced by SY dye is kinetically very fast, no lag phase was detected, and the kinetics process follows an isodesmic kinetics pathway. The SY-dye induce aggregates have cross-β secondary structure confirmed by far-UV CD measurements. The effect of salts and solvents was also seen on SY-induced aggregates. Turbidity, far-UV CD, and kinetics results suggest that certain concentrations of NaCl and (NH4)2SO4 solubilize the SY-induce amyloid fibrils, but (NH4)2SO4 is more effective. Similarly, solvents are also solubilized the SY-induces HEWL amyloid fibrillation but the order of defibrillation is as follows: Isopropanol> ethanol > methanol which signified that isopropanol is more effective than other solvents. The salts and solvents data suggest that the electrostatic, as well as hydrophobic interaction, is responsible for SY-induced amyloid fibrillation. These conformational changes should be examined, more seriously for the purpose of food safety.
Collapse
Affiliation(s)
- Mohammed J Hakeem
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Vivek Ambastha
- Biology Department, Washington University in St Louis, One Brooking Dr, St Louis 631330, MO, USA
| |
Collapse
|
9
|
Rupreo V, Luikham S, Bhattacharyya J. PROTEIN BINDING CHARACTERISTICS OF YOHIMBINE, A NATURAL INDOLE ALKALOID BASED DRUG FOR ERECTILE DYSFUNCTION. LUMINESCENCE 2022; 37:1532-1540. [PMID: 35816091 DOI: 10.1002/bio.4327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/08/2022]
Abstract
Even to this day, talking about sexual-dysfunctions largely remains a taboo. Hence less studies were recorded and fewer remedies given. Erectile dysfunction (ED) is one of the most commonly treated psychological disorders which leads to major distress, interpersonal limitation and reduces the quality of life & marriage. This study aimed to assess a plant-derived molecule, Yohimbine (Yoh, a β-carboline indole-alkaloid; often used for ED treatment) and its potential binding phenomenon with hemoglobin (Hb). Successful binding of the Yoh with Hb is evident from spectroscopic and molecular-docking results. Yoh quenched the fluorescence of Hb efficiently through static mode. The binding affinity was in the order of 105 M-1 with 1:1 stoichiometry. Thermodynamic analyses concluded that the protein-ligand association to be spontaneous and attributed by entropy-driven exothermic-binding. Non-polyelectrolytic factor was the core, dominating factor. The structural aspects have been deciphered through infra-red spectroscopy and computational-methods. The giant 3D-protein moiety was significantly perturbed through drug-binding. Hydrophobic forces and hydrogen bonding participation were stipulated by molecular modeling data. This study reveals the detailed interaction pattern and molecular mechanism of Hb-Yoh binding; correlating the structure-function relationship for the first time; therefore, holds enormous importance from the standpoint of rational and efficient drug-designing & development.
Collapse
Affiliation(s)
- Vibeizonuo Rupreo
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, India
| | - Soching Luikham
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland, India
| |
Collapse
|
10
|
Mavani A, Ovung A, Luikham S, Suresh Kumar G, Das A, Ray D, Aswal VK, Bhattacharyya J. Biophysical and molecular modeling evidences for the binding of sulfa molecules with hemoglobin. J Biomol Struct Dyn 2022; 41:3779-3790. [PMID: 35380096 DOI: 10.1080/07391102.2022.2057358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The molecular mechanism of the heme protein, hemoglobin (Hb) interaction with sulfa molecule, sulfadiazine (SDZ) has been investigated through spectroscopic, neutron scattering and molecular modeling techniques. Absorption and emission spectroscopic studies showed that SDZ molecules were bound to Hb protein, non-cooperatively. The binding affinityof SDZ-Hb complex at standard experimental condition was evaluated to be around (4.2 ± 0.07) ×104, M-1with 1:1 stoichiometry. Drug induced structural perturbation of the 3 D protein moiety was confirmed through circular dichroism (CD), synchronous fluorescence and small angle neutron scattering methods. From the temperature dependent spectrofluorometric studies, the negative standard molar Gibbs energy change suggested the spontaneity of the reaction. The negative enthalpy and positive entropy change(s) indicated towards the involvement of both electrostatic and hydrophobic forces during the association process. Salt dependent fluorescence study revealed major contributions from non-poly-electrolytic forces. Molecular modeling studies determined the probable binding sites, types of interaction involved and the conformational alteration of the compactness of the Hb structure upon interaction with SDZ molecule. Overall, the study provides detailed insights into the binding mechanism of SDZ antibiotics to Hb protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A. Mavani
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, Nagaland, India
| | - Aben Ovung
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, Nagaland, India
| | - Soching Luikham
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, Nagaland, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Abhi Das
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Vinod K. Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Dimapur, Nagaland, India
| |
Collapse
|
11
|
Ovung A, Mavani A, Ghosh A, Chatterjee S, Das A, Suresh Kumar G, Ray D, Aswal VK, Bhattacharyya J. Heme Protein Binding of Sulfonamide Compounds: A Correlation Study by Spectroscopic, Calorimetric, and Computational Methods. ACS OMEGA 2022; 7:4932-4944. [PMID: 35187312 PMCID: PMC8851458 DOI: 10.1021/acsomega.1c05554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/24/2022] [Indexed: 05/16/2023]
Abstract
Protein-ligand interaction studies are useful to determine the molecular mechanism of the binding phenomenon, leading to the establishment of the structure-function relationship. Here, we report the binding of well-known antibiotic sulfonamide drugs (sulfamethazine, SMZ; and sulfadiazine, SDZ) with heme protein myoglobin (Mb) using spectroscopic, calorimetric, ζ potential, and computational methods. Formation of a 1:1 complex between the ligand and Mb through well-defined equilibrium was observed. The binding constants obtained between Mb and SMZ/SDZ drugs were on the order of 104 M-1. SMZ with two additional methyl (-CH3) substitutions has higher affinity than SDZ. Upon drug binding, a notable loss in the helicity (via circular dichroism) and perturbation of the three-dimensional (3D) protein structure (via infrared and synchronous fluorescence experiments) were observed. The binding also indicated the dominance of non-polyelectrolytic forces between the amino acid residues of the protein and the drugs. The ligand-protein binding distance signified high probability of energy transfer between them. Destabilization of the protein structure upon binding was evident from differential scanning calorimetry results and ζ potential analyses. Molecular docking presented the best probable binding sites of the drugs inside protein pockets. Thus, the present study explores the potential binding characteristics of two sulfonamide drugs (with different substitutions) with myoglobin, correlating the structural and energetic aspects.
Collapse
Affiliation(s)
- Aben Ovung
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| | - A. Mavani
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| | - Ambarnil Ghosh
- UCD
Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sabyasachi Chatterjee
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Abhi Das
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gopinatha Suresh Kumar
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debes Ray
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Vinod K. Aswal
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Jhimli Bhattacharyya
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| |
Collapse
|
12
|
Khan JM, Malik A, Husain FM, Hakeem MJ, Alhomida AS. Sunset Yellow Dye Induces Amorphous Aggregation in β-Lactoglobulin at Acidic pH: A Multi-Techniques Approach. Polymers (Basel) 2022; 14:polym14030395. [PMID: 35160385 PMCID: PMC8839080 DOI: 10.3390/polym14030395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Protein aggregation is of two types: (i) amorphous and (ii) amyloid fibril. Several extrinsic factors (temperature, pH, and small ligands) stimulate protein aggregation in vitro. In this study, we have examined the role of sunset yellow (SY) on the β-lactoglobulin (BLG) aggregation at pH 2.0. We have used spectroscopic (turbidity, Rayleigh light scattering (RLS), far-UV CD) and microscopic (transmission electron microscopy [TEM]) techniques to describe the effects of SY on BLG aggregation. Our results showed that BLG aggregation is dependent on SY concentrations. Very low concentrations (0.0–0.07 mM) of SY were unable to induce aggregation, while SY in the concentrations range of 0.1–5.0 mM induces aggregation in BLG. The kinetics of SY-stimulated aggregation is very fast and monomeric form of BLG directly converted into polymeric aggregates. The kinetics results also showed SY-induced BLG aggregation disappeared in the presence of NaCl. The far-UV CD and TEM results indicated the amorphous nature of SY-induced BLG aggregates. We believe that our results clearly suggest that SY dye effectively stimulates BLG aggregation.
Collapse
Affiliation(s)
- Javed Masood Khan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (F.M.H.); (M.J.H.)
- Correspondence:
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (A.S.A.)
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (F.M.H.); (M.J.H.)
| | - Mohammed J. Hakeem
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (F.M.H.); (M.J.H.)
| | - Abdullah S. Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.); (A.S.A.)
| |
Collapse
|
13
|
Basu A, Mahammad A, Das A. Inhibition of the formation of lysozyme fibrillar assemblies by the isoquinoline alkaloid coralyne. NEW J CHEM 2022. [DOI: 10.1039/d1nj06007d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The isoquinoline alkaloid coralyne can efficiently attenuate fibrillogenesis in lysozyme.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Adil Mahammad
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| | - Arindam Das
- Department of Chemistry, Vidyasagar University, Midnapore 721 102, India
| |
Collapse
|
14
|
Jesus CSH, Soares HT, Piedade AP, Cortes L, Serpa C. Using amyloid autofluorescence as a biomarker for lysozyme aggregation inhibition. Analyst 2021; 146:2383-2391. [PMID: 33646214 DOI: 10.1039/d0an02260h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The assembly of proteins into amyloidogenic aggregates underlies the onset and symptoms of several pathologies, including Alzheimer's disease, Parkinson's disease and type II diabetes. Among the efforts for fighting these diseases, there is a great demand for developing novel, fast and reliable methods for in vitro screening of new drugs that may suppress or reverse amyloidogenesis. Recent studies unravelled a progressive increase in a blue autofluorescence upon amyloid formation originated from many different proteins, including the peptide amyloid-β, lysozyme or insulin. Herein, we propose a drug screening method using this property, avoiding the use of external probe dyes. We demonstrate that the inhibition of lysozyme amyloid formation by means of two known inhibitors, tartrazine and amaranth, can be monitored based on the autofluorescence of lysozyme amyloid aggregates. Our results show that amyloid luminescence is an intrinsic property that can be potentially applied in a screening assay, allowing the ranking of drug efficiency. The assays demonstrated here are fast to perform and suitable for scaling using microplate assays, configuring a new sensitive and economically feasible method.
Collapse
Affiliation(s)
- Catarina S H Jesus
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
15
|
Wu S, Yin ZZ, Chen X, Wang X, Wu D, Kong Y. Electropolymerized melamine for simultaneous determination of nitrite and tartrazine. Food Chem 2020; 333:127532. [PMID: 32668396 DOI: 10.1016/j.foodchem.2020.127532] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 11/27/2022]
Abstract
Poly(melamine) (PMel) was synthesized via the electropolymerization of melamine monomer, which was then characterized by field-emission scanning electron microscopy (FESEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The possible polymerization mechanisms of melamine were also revealed by FT-IR spectroscopy and UV-Vis spectroscopy. Next, the PMel modified GCE (PMel/GCE) was used for the simultaneous determination of nitrite (NO2-) and tartrazine, and the parameters were optimized. The kinetic study showed that the electrochemical oxidation of nitrite and tartrazine at the surface of PMel/GCE is a typical surface-controlled electrode process. Under the optimun conditions, the developed sensor outperformed those previously reported, and it also exhibited high selectivity and reproducibility. Finally, the PMel/GCE was used for the simultaneous determination of nitrite and tartrazine in foodstuffs, and the results indicated that the proposed sensor could be a promising candidate for accurate determination of nitrite and tartrazine in real food samples.
Collapse
Affiliation(s)
- Shanshan Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaohui Chen
- Research Center of Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xueqing Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
16
|
Ali MS, Al-Lohedan HA. Spectroscopic and Molecular Docking Investigation on the Noncovalent Interaction of Lysozyme with Saffron Constituent "Safranal". ACS OMEGA 2020; 5:9131-9141. [PMID: 32363265 PMCID: PMC7191604 DOI: 10.1021/acsomega.9b04291] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/26/2020] [Indexed: 05/05/2023]
Abstract
Owing to the various beneficial properties of the popular spice saffron, the interaction of safranal, a secondary metabolite of the former, with hen egg white lysozyme was investigated. The formation of a complex was evidenced by UV-visible spectroscopy. Fluorescence quenching experiments were also performed to understand the binding mechanism and to evaluate the forces involved in binding. The strong absorption of safranal in the range of excitation and emission wavelengths of lysozyme fluorescence required the correction of the inner filter effect for fluorescence spectra to obtain the apparent extent of binding. There was a considerable difference between the observed spectra and corrected spectra, and a similar observation was found in the case of synchronous fluorescence spectra. From the analysis of quenching data, it was found that the mechanism involved in quenching was static with 1:1 binding between them. The interaction was found to be driven, mainly, by hydrophobic forces and hydrogen bonding. Safranal had negligible impact on the secondary structure of lysozyme. The interaction was also studied by molecular docking, and the results were in good agreement with the results obtained experimentally. The binding site of safranal was in the big hydrophobic cavity of lysozyme. The amino acids involved in the interaction were Asp52, Ile58, Gln57, Asn59, Trp62, Trp63, Trp108, Ile98, Asp101, and Ala107.
Collapse
|
17
|
Anionic food color tartrazine enhances antibacterial efficacy of histatin-derived peptide DHVAR4 by fine-tuning its membrane activity. Q Rev Biophys 2020; 53:e5. [PMID: 32115014 DOI: 10.1017/s0033583520000013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Here it is demonstrated how some anionic food additives commonly used in our diet, such as tartrazine (TZ), bind to DHVAR4, an antimicrobial peptide (AMP) derived from oral host defense peptides, resulting in significantly fostered toxic activity against both Gram-positive and Gram-negative bacteria, but not against mammalian cells. Biophysical studies on the DHVAR4-TZ interaction indicate that initially large, positively charged aggregates are formed, but in the presence of lipid bilayers, they rather associate with the membrane surface. In contrast to synergistic effects observed for mixed antibacterial compounds, this is a principally different mechanism, where TZ directly acts on the membrane-associated AMP promoting its biologically active helical conformation. Model vesicle studies show that compared to dye-free DHVAR4, peptide-TZ complexes are more prone to form H-bonds with the phosphate ester moiety of the bilayer head-group region resulting in more controlled bilayer fusion mechanism and concerted severe cell damage. AMPs are considered as promising compounds to combat formidable antibiotic-resistant bacterial infections; however, we know very little on their in vivo actions, especially on how they interact with other chemical agents. The current example illustrates how food dyes can modulate AMP activity, which is hoped to inspire improved therapies against microbial infections in the alimentary tract. Results also imply that the structure and function of natural AMPs could be manipulated by small compounds, which may also offer a new strategic concept for the future design of peptide-based antimicrobials.
Collapse
|
18
|
Kabir A, Jash C, Payghan PV, Ghoshal N, Kumar GS. Polyamines and its analogue modulates amyloid fibrillation in lysozyme: A comparative investigation. Biochim Biophys Acta Gen Subj 2020; 1864:129557. [PMID: 32045632 DOI: 10.1016/j.bbagen.2020.129557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/03/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Polyamines can induce protein aggregation that can be related to the physiology of the cellular function. Polyamines have been implicated in protein aggregation which may lead to neuropathic and non neuropathic amyloidosis. SCOPE OF REVIEW Change in the level of polyamine concentration has been associated with ageing and neurodegeneration such as Parkinson's disease, Alzheimer's disease. Lysozyme aggregation in the presence of polyamines leads to non neuropathic amyloidosis. Polyamine analogues can suppress or inhibit protein aggregation suggesting their efficacy against amyloidogenic protein aggregates. MAJOR CONCLUSIONS In this study we report the comparative interactions of lysozyme with the polyamine analogue, 1-naphthyl acetyl spermine in comparison with the biogenic polyamines through spectroscopy, calorimetry, imaging and docking techniques. The findings revealed that the affinity of binding varied as spermidine > 1-naphthyl acetyl spermine > spermine. The biogenic polyamines accelerated the rate of fibrillation significantly, whereas the analogue inhibited the rate of fibrillation to a considerable extent. The polyamines bind near the catalytic diad residues viz. Glu35 and Asp52, and in close proximity of Trp62 residue. However, the analogue showed dual nature of interaction where its alkyl amine region bind in same way as the biogenic polyamines bind to the catalytic site, while the naphthyl group makes hydrophobic contacts with Trp62 and Trp63, thereby suggesting its direct influence on fibrillation. GENERAL SIGNIFICANCE This study, thus, potentiates, the development of a polyamine analogue that can perform as an effective inhibitor targeted towards aggregation of amyloidogenic proteins.
Collapse
Affiliation(s)
- Ayesha Kabir
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Chandrima Jash
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Pavan V Payghan
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Nanda Ghoshal
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
19
|
Patel BK, Sepay N, Mahapatra A. Curious Results in the Prospective Binding Interactions of the Food Additive Tartrazine with β-Lactoglobulin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11579-11589. [PMID: 31385703 DOI: 10.1021/acs.langmuir.9b01242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detailed characterizations of the binding interactions between food additive tartrazine (TZ) and β-lactoglobulin (β-LG) have been investigated through spectroscopic techniques combined with a molecular modeling study. A series of analyses, such as hyperchromic change in the UV-visible spectra, temperature-dependent quenching constant, time-resolved fluorescence, and Rayleigh scattering measurements, show that quenching of β-LG proceeds by a static quenching mechanism. TZ specifically binds with β-LG in a stoichiometry ratio of 1:1, and the observed binding constants (104, K) are 7.64, 9.13, 9.72, and 10.79 at 293, 298, 303, and 308 K, respectively. However, the curious results of binding constants (K) with temperature, encountered in the static quenching, have been well explained on the basis of Le Chatelier's principle. Thermodynamic data and pH-dependent studies along with the surface hydrophobicity binding displacement assay reveal that the durable mode of binding is chiefly entropy-driven, revealing noteworthy interactions of such ionic molecules with the hydrophobic part of β-LG. The modulation of protein conformation has been investigated through steady-state absorption spectroscopy, synchronous emission spectroscopy, circular dichroism, and dynamic light scattering studies. TZ acts as a potential inhibitor in fibrillogenesis. Furthermore, the molecular docking study offers accurate insights about the binding of TZ with β-LG, in consistence with the experimental results. This study would be helpful in pharmaceutical, food, and industrial engineering chemistry research.
Collapse
Affiliation(s)
- Biman Kumar Patel
- Department of Chemistry , Jadavpur University , Kolkata 700 032 , India
| | - Nayim Sepay
- Department of Chemistry , Jadavpur University , Kolkata 700 032 , India
| | | |
Collapse
|
20
|
Wu D, Duan R, Geng F, Hu X, Gan N, Li H. Comparative analysis of the interaction of mono-, dis-, and tris-azo food dyes with egg white lysozyme: A combined spectroscopic and computational simulation approach. Food Chem 2019; 284:180-187. [DOI: 10.1016/j.foodchem.2019.01.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/29/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022]
|
21
|
Vus K, Girych M, Trusova V, Gorbenko G, Kurutos A, Vasilev A, Gadjev N, Deligeorgiev T. Cyanine dyes derived inhibition of insulin fibrillization. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zhou Y, Qin Y, Dai W, Luo X. Highly Efficient Degradation of Tartrazine with a Benzoic Acid/TiO 2 System. ACS OMEGA 2019; 4:546-554. [PMID: 31459349 PMCID: PMC6648437 DOI: 10.1021/acsomega.8b03267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 05/05/2023]
Abstract
The roles of benzoic acid and its derivatives in the photocatalytic degradation of tartrazine (TZ) by titanium dioxide have been studied. A series of comparative experiments were carried out, such as the experimental comparisons of concentrations, pH values, effects on the para-position of benzoic acid, gas atmospheres, and different target pollutants. It should be noted that the degradation rate of TZ solution without benzoic acid and benzoic acid after degradation for 90 min was 28.69 and 99.08%, respectively. The reason for the above results is that benzoic acid acts as an electron donor to react with photogenerated holes, suppressing the recombination of photogenerated holes and electrons, and thus causing a significant increase in the degradation rate. Moreover, the degradation process is mainly induced by O2 •- and photogenerated holes (h+). It is the first time that the benzoic acid/TiO2 system has been used to degrade the TZ dye. In addition, the benzoic acid/TiO2 system is also suitable for the degradation of other organic dyes such as methyl orange, rhodamine B, methylene blue, and methyl violet.
Collapse
|
23
|
Millan S, Satish L, Bera K, Sahoo H. Binding and inhibitory effect of the food colorants Sunset Yellow and Ponceau 4R on amyloid fibrillation of lysozyme. NEW J CHEM 2019. [DOI: 10.1039/c8nj05827j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Amyloid fibrillogenesis of proteins is known to be the root cause of a large number of diseases like Parkinson's, Alzheimer's, and Huntington's disease, spongiform encephalopathy, amyloid polyneuropathy, type-II diabetes, etc.
Collapse
Affiliation(s)
- Sabera Millan
- Department of Chemistry
- National Institute of Technology (NIT)
- Rourkela-769008, Sundergarh
- India
| | - Lakkoji Satish
- Department of Chemistry
- National Institute of Technology (NIT)
- Rourkela-769008, Sundergarh
- India
| | - Krishnendu Bera
- CEITEC MU
- Masaryk University
- Kamenice 753/5
- 625 00 Brno
- Czech Republic
| | - Harekrushna Sahoo
- Department of Chemistry
- National Institute of Technology (NIT)
- Rourkela-769008, Sundergarh
- India
| |
Collapse
|
24
|
Saha B, Chowdhury S, Sanyal D, Chattopadhyay K, Suresh Kumar G. Comparative Study of Toluidine Blue O and Methylene Blue Binding to Lysozyme and Their Inhibitory Effects on Protein Aggregation. ACS OMEGA 2018; 3:2588-2601. [PMID: 30023840 PMCID: PMC6044680 DOI: 10.1021/acsomega.7b01991] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/19/2018] [Indexed: 06/01/2023]
Abstract
A comparative binding interaction of toluidine blue O (TBO) and methylene blue (MB) with lysozyme was investigated by multifaceted biophysical approaches as well as from the aspects of in silico biophysics. The bindings were static, and it occurred via ground-state complex formation as confirmed from time-resolved fluorescence experiments. From steady-state fluorescence and anisotropy, binding constants were calculated, and it was found that TBO binds more effectively than MB. Synchronous fluorescence spectra revealed that binding of dyes to lysozyme causes polarity changes around the tryptophan (Trp) moiety, most likely at Trp 62 and 63. Calorimetric titration also depicts the higher binding affinity of TBO over MB, and the interactions were exothermic and entropy-driven. In silico studies revealed the potential binding pockets in lysozyme and the participation of residues Trp 62 and 63 in ligand binding. Furthermore, calculations of thermodynamic parameters from the theoretical docking studies were in compliance with experimental observations. Moreover, an inhibitory effect of these dyes to lysozyme fibrillogenesis was examined, and the morphology of the formed fibril was scanned by atomic force microscopy imaging. TBO was observed to exhibit higher potential in inhibiting the fibrillogenesis than MB, and this phenomenon stands out as a promising antiamyloid therapeutic strategy.
Collapse
Affiliation(s)
- Baishakhi Saha
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sourav Chowdhury
- Structural
Biology and Bioinformatics Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Dwipanjan Sanyal
- Structural
Biology and Bioinformatics Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Krishnananda Chattopadhyay
- Structural
Biology and Bioinformatics Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Organic
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
25
|
Basu A, Bhattacharya SC, Kumar GS. Influence of the ionic liquid 1-butyl-3-methylimidazolium bromide on amyloid fibrillogenesis in lysozyme: Evidence from photophysical and imaging studies. Int J Biol Macromol 2018; 107:2643-2649. [DOI: 10.1016/j.ijbiomac.2017.10.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023]
|
26
|
Wang B, Pilkington EH, Sun Y, Davis TP, Ke PC, Ding F. Modulating protein amyloid aggregation with nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2017; 4:1772-1783. [PMID: 29230295 PMCID: PMC5722024 DOI: 10.1039/c7en00436b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Direct exposure or intake of nanopaticles (NPs) to the human body can invoke a series of biological responses, some of which are deleterious, and as such the role of NPs in vivo requires thorough examination. Over the past decade, it has been established that biomolecules such as proteins can bind NPs to form a 'corona', where the structures and dynamics of NP-associated proteins can assign new functionality, systemic distribution and toxicity. However, the behavior and fate of NPs in biological systems are still far from being fully understood. Growing evidence has shown that some natural or artificial NPs could either up- or down-regulate protein amyloid aggregation, which is associated with neurodegenerative diseases like Alzheimer's and Parkinson's diseases, as well as metabolic diseases such as type 2 diabetes. These effects can be either indirect (e.g., through a crowding effect) or direct, depending on the NP composition, size, shape and surface chemistry. However, efforts to design anti-amyloid NPs for biomedical applications have been largely hindered by insufficient understanding of the complex processes, even though proof-of-concept experiments have been conducted. Therefore, exploring the general mechanisms of NP-meditated protein aggregation marks an emerging field in bio-nano research and a new stage of handling nanotechnology that not only aids in elucidating the origin of nanotoxicity, but also provides a foundation for engineering de novo anti-amyloid nanomedicines. In this review, we summarize research on NP-mediated protein amyloid aggregation, with the goal of contributing to sustained nanotechnology and safe nanomedicine against amyloid diseases.
Collapse
Affiliation(s)
- Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| |
Collapse
|
27
|
Kundu S, Banerjee C, Sarkar N. Inhibiting the Fibrillation of Serum Albumin Proteins in the Presence of Surface Active Ionic Liquids (SAILs) at Low pH: Spectroscopic and Microscopic Study. J Phys Chem B 2017; 121:7550-7560. [DOI: 10.1021/acs.jpcb.7b03457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Chiranjib Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
28
|
Basu A, Suresh Kumar G. Interaction and inhibitory influence of the azo dye carmoisine on lysozyme amyloid fibrillogenesis. MOLECULAR BIOSYSTEMS 2017. [DOI: 10.1039/c7mb00207f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The azo dye carmoisine has a significant inhibitory effect on fibrillogenesis in lysozyme.
Collapse
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory
- Organic & Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Organic & Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|