1
|
Chan A, Tajkhorshid E, Luthey-Schulten Z, Sener M. Modeling Diffusive Motion of Ferredoxin and Plastocyanin on the PSI Domain of Procholorococcus marinus MIT9313. J Phys Chem B 2025; 129:52-70. [PMID: 39723618 DOI: 10.1021/acs.jpcb.4c05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Diffusion of mobile charge carriers, such as ferredoxin and plastocyanin, often constitutes a rate-determining step in photosynthetic energy conversion. The diffusion time scales typically exceed that of other primary bioenergetic processes and remain beyond the reach of direct simulation at the molecular level. We characterize the diffusive kinetics of ferredoxin and plastocyanin upon the photosystem I-rich domain of Prochlorococcus, the most abundant phototroph on Earth by mass. A modeling approach for ferredoxin and plastocyanin diffusion is presented that uses ensembles of coarse-grained molecular dynamics simulations in Martini 2.2P with GROMACS 2021.2. The simulation ensembles are used to construct the diffusion coefficient and drift for ferredoxin and plastocyanin as spatial functions in the photosystem I domain of the MIT9313 ecotype. Four separate models are constructed, corresponding to ferredoxin and plastocyanin in reduced and oxidized states. A single scaling constant of 0.7 is found to be sufficient to adjust the diffusion coefficient obtained from the Martini simulation ensemble to match the in vitro values for both ferredoxin and plastocyanin. A comparison of Martini versions (2.2P, 2.2, 3) is presented with respect to diffusion scaling. The diffusion coefficient and drift together quantify the inhomogeneity of diffusive behavior. Notably, a funnel-like convergence toward the corresponding putative binding positions is observed for both ferredoxin and plastocyanin, even without such a priori foreknowledge supplied in the simulation protocol. The approach presented here is of relevance for studying diffusion kinetics in photosynthetic and other bioenergetic processes.
Collapse
Affiliation(s)
- Aaron Chan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Department of Biochemistry, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Department of Chemistry, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
| | - Zaida Luthey-Schulten
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- Department of Chemistry, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
| | - Melih Sener
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana─Champaign, Urbana, Illinois 61801-3028, United States
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
2
|
Martin EC, Bowie AG, Wellfare Reid T, Neil Hunter C, Hitchcock A, Swainsbury DJ. Sulfoquinovosyl diacylglycerol is required for dimerisation of the Rhodobacter sphaeroides reaction centre-light harvesting 1 core complex. Biochem J 2024; 481:823-838. [PMID: 38780411 PMCID: PMC11346425 DOI: 10.1042/bcj20240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.
Collapse
Affiliation(s)
- Elizabeth C. Martin
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Adam G.M. Bowie
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Taylor Wellfare Reid
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | | |
Collapse
|
3
|
Pirnia A, Maqdisi R, Mittal S, Sener M, Singharoy A. Perspective on Integrative Simulations of Bioenergetic Domains. J Phys Chem B 2024; 128:3302-3319. [PMID: 38562105 DOI: 10.1021/acs.jpcb.3c07335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioenergetic processes in cells, such as photosynthesis or respiration, integrate many time and length scales, which makes the simulation of energy conversion with a mere single level of theory impossible. Just like the myriad of experimental techniques required to examine each level of organization, an array of overlapping computational techniques is necessary to model energy conversion. Here, a perspective is presented on recent efforts for modeling bioenergetic phenomena with a focus on molecular dynamics simulations and its variants as a primary method. An overview of the various classical, quantum mechanical, enhanced sampling, coarse-grained, Brownian dynamics, and Monte Carlo methods is presented. Example applications discussed include multiscale simulations of membrane-wide electron transport, rate kinetics of ATP turnover from electrochemical gradients, and finally, integrative modeling of the chromatophore, a photosynthetic pseudo-organelle.
Collapse
Affiliation(s)
- Adam Pirnia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| | - Ranel Maqdisi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| | - Sumit Mittal
- VIT Bhopal University, Sehore 466114, Madhya Pradesh, India
| | - Melih Sener
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| |
Collapse
|
4
|
Albanese P, Mavelli F, Altamura E. Light energy transduction in liposome-based artificial cells. Front Bioeng Biotechnol 2023; 11:1161730. [PMID: 37064236 PMCID: PMC10091278 DOI: 10.3389/fbioe.2023.1161730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
In this work we review the latest strategies for the bottom-up assembly of energetically autonomous artificial cells capable of transducing light energy into chemical energy and support internalized metabolic pathways. Such entities are built by taking inspiration from the photosynthetic machineries found in nature which are purified and reconstituted directly in the membrane of artificial compartments or encapsulated in form of organelle-like structures. Specifically, we report and discuss recent examples based on liposome-technology and multi-compartment (nested) architectures pointing out the importance of this matter for the artificial cell synthesis research field and some limitations and perspectives of the bottom-up approach.
Collapse
Affiliation(s)
- Paola Albanese
- Department of Earth, Environmental and Physical Sciences, University of Siena, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Siena, Italy
| | - Fabio Mavelli
- Department of Chemistry, University of Bari, Bari, Italy
- *Correspondence: Fabio Mavelli, ; Emiliano Altamura,
| | - Emiliano Altamura
- Department of Chemistry, University of Bari, Bari, Italy
- *Correspondence: Fabio Mavelli, ; Emiliano Altamura,
| |
Collapse
|
5
|
Vasilev C, Swainsbury DJK, Cartron ML, Martin EC, Kumar S, Hobbs JK, Johnson MP, Hitchcock A, Hunter CN. FRET measurement of cytochrome bc 1 and reaction centre complex proximity in live Rhodobacter sphaeroides cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148508. [PMID: 34793767 DOI: 10.1016/j.bbabio.2021.148508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
In the model purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides, solar energy is converted via coupled electron and proton transfer reactions within the intracytoplasmic membranes (ICMs), infoldings of the cytoplasmic membrane that form spherical 'chromatophore' vesicles. These bacterial 'organelles' are ideal model systems for studying how the organisation of the photosynthetic complexes therein shape membrane architecture. In Rba. sphaeroides, light-harvesting 2 (LH2) complexes transfer absorbed excitation energy to dimeric reaction centre (RC)-LH1-PufX complexes. The PufX polypeptide creates a channel that allows the lipid soluble electron carrier quinol, produced by RC photochemistry, to diffuse to the cytochrome bc1 complex, where quinols are oxidised to quinones, with the liberated protons used to generate a transmembrane proton gradient and the electrons returned to the RC via cytochrome c2. Proximity between cytochrome bc1 and RC-LH1-PufX minimises quinone/quinol/cytochrome c2 diffusion distances within this protein-crowded membrane, however this distance has not yet been measured. Here, we tag the RC and cytochrome bc1 with yellow or cyan fluorescent proteins (YFP/CFP) and record the lifetimes of YFP/CFP Förster resonance energy transfer (FRET) pairs in whole cells. FRET analysis shows that that these complexes lie on average within 6 nm of each other. Complementary high-resolution atomic force microscopy (AFM) of intact, purified chromatophores verifies the close association of cytochrome bc1 complexes with RC-LH1-PufX dimers. Our results provide a structural basis for the close kinetic coupling between RC-LH1-PufX and cytochrome bc1 observed by spectroscopy, and explain how quinols/quinones and cytochrome c2 shuttle on a millisecond timescale between these complexes, sustaining efficient photosynthetic electron flow.
Collapse
Affiliation(s)
- Cvetelin Vasilev
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
| | - David J K Swainsbury
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Michael L Cartron
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Elizabeth C Martin
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Sandip Kumar
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7HR, United Kingdom; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7HR, United Kingdom
| | - Matthew P Johnson
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Andrew Hitchcock
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
6
|
Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells. Proc Natl Acad Sci U S A 2021; 118:2012170118. [PMID: 33526592 DOI: 10.1073/pnas.2012170118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The construction of energetically autonomous artificial protocells is one of the most ambitious goals in bottom-up synthetic biology. Here, we show an efficient manner to build adenosine 5'-triphosphate (ATP) synthesizing hybrid multicompartment protocells. Bacterial chromatophores from Rhodobacter sphaeroides accomplish the photophosphorylation of adenosine 5'-diphosphate (ADP) to ATP, functioning as nanosized photosynthetic organellae when encapsulated inside artificial giant phospholipid vesicles (ATP production rate up to ∼100 ATP∙s-1 per ATP synthase). The chromatophore morphology and the orientation of the photophosphorylation proteins were characterized by cryo-electron microscopy (cryo-EM) and time-resolved spectroscopy. The freshly synthesized ATP has been employed for sustaining the transcription of a DNA gene, following the RNA biosynthesis inside individual vesicles by confocal microscopy. The hybrid multicompartment approach here proposed is very promising for the construction of full-fledged artificial protocells because it relies on easy-to-obtain and ready-to-use chromatophores, paving the way for artificial simplified-autotroph protocells (ASAPs).
Collapse
|
7
|
Koblížek M, Dachev M, Bína D, Nupur, Piwosz K, Kaftan D. Utilization of light energy in phototrophic Gemmatimonadetes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112085. [PMID: 33220599 DOI: 10.1016/j.jphotobiol.2020.112085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 02/03/2023]
Abstract
Gemmatimonas phototrophica is, so far, the only described phototrophic species of the bacterial phylum Gemmatimonadetes. Its cells contain a unique type of photosynthetic complex with the reaction center surrounded by a double ring antenna, however they can also grow in the dark using organic carbon substrates. Its photosynthesis genes were received via horizontal gene transfer from Proteobacteria. This raises two questions; how the horizontally transferred photosynthesis apparatus has integrated into the cellular machinery, and how much light-derived energy actually contributes to the cellular metabolism? To address these points, the photosynthetic reactions were studied on several levels, from photophysics of the reaction center to cellular growth. Flash photolysis measurements and bacteriochlorophyll fluorescence kinetic measurements documented the presence of fully functional type-2 reaction centers with a large light harvesting antenna. When illuminated, the bacterial cells reduced their respiration rate by 58 ± 5%, revealing that oxidative phosphorylation was replaced by photophosphorylation. Moreover, illumination also more than doubled the assimilation rates of glucose, a sugar that is mostly used for respiration. Finally, light increased the growth rates of Gemmatimonas phototrophica colonies on agar plates. All the presented data provide evidence that photosynthetic complexes are fully integrated into cellular metabolism of Gemmatimonas phototrophica, and are able to provide a substantial amount of energy for its metabolism and growth.
Collapse
Affiliation(s)
- Michal Koblížek
- Center Algatech, Institute of Microbiology, Czech Acad Sci, 37981 Třeboň, Czechia.
| | - Marko Dachev
- Center Algatech, Institute of Microbiology, Czech Acad Sci, 37981 Třeboň, Czechia
| | - David Bína
- University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czechia; Institute of Plant Molecular Biology, Biology Centre, Czech Acad Sci, Branišovská 1760, 370 05 České Budějovice, Czechia
| | - Nupur
- Center Algatech, Institute of Microbiology, Czech Acad Sci, 37981 Třeboň, Czechia
| | - Kasia Piwosz
- Center Algatech, Institute of Microbiology, Czech Acad Sci, 37981 Třeboň, Czechia
| | - David Kaftan
- Center Algatech, Institute of Microbiology, Czech Acad Sci, 37981 Třeboň, Czechia; University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czechia
| |
Collapse
|
8
|
Huang X, Vasilev C, Hunter CN. Excitation energy transfer between monomolecular layers of light harvesting LH2 and LH1-reaction centre complexes printed on a glass substrate. LAB ON A CHIP 2020; 20:2529-2538. [PMID: 32662473 DOI: 10.1039/d0lc00156b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-harvesting 2 (LH2) and light-harvesting 1 - reaction centre (RCLH1) complexes purified from the photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were cross-patterned on glass surfaces for energy transfer studies. Atomic force microscopy (AFM) images of the RCLH1 and LH2 patterns show the deposition of monomolecular layers of complexes on the glass substrate. Spectral imaging and fluorescence life-time imaging microscopy (FLIM) revealed that RCLH1 and LH2 complexes, sealed under physiological conditions, retained their native light-harvesting and energy transfer functions. Measurements of the amplitude and lifetime decay of fluorescence emission from LH2 complexes, the energy transfer donors, and gain of fluorescence emission from acceptor RCLH1 complexes, provide evidence for excitation energy transfer from LH2 to RCLH1. Directional energy transfer on the glass substrate was unequivocally established by using LH2-carotenoid complexes and RCLH1 complexes with genetically removed carotenoids. Specific excitation of carotenoids in donor LH2 complexes elicited fluorescence emission from RCLH1 acceptors. To explore the longevity of this novel nanoprinted photosynthetic unit, RCLH1 and LH2 complexes were cross-patterned on a glass surface and sealed under a protective argon atmosphere. The results show that both complexes retained their individual and collective functions and are capable of directional excitation energy transfer for at least 60 days.
Collapse
Affiliation(s)
- Xia Huang
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
9
|
Sener M, Levy S, Stone JE, Christensen AJ, Isralewitz B, Patterson R, Borkiewicz K, Carpenter J, Hunter CN, Luthey-Schulten Z, Cox D. Multiscale modeling and cinematic visualization of photosynthetic energy conversion processes from electronic to cell scales. PARALLEL COMPUTING 2020; 102:102698. [PMID: 34824485 PMCID: PMC8612599 DOI: 10.1016/j.parco.2020.102698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Conversion of sunlight into chemical energy, namely photosynthesis, is the primary energy source of life on Earth. A visualization depicting this process, based on multiscale computational models from electronic to cell scales, is presented in the form of an excerpt from the fulldome show Birth of Planet Earth. This accessible visual narrative shows a lay audience, including children, how the energy of sunlight is captured, converted, and stored through a chain of proteins to power living cells. The visualization is the result of a multi-year collaboration among biophysicists, visualization scientists, and artists, which, in turn, is based on a decade-long experimental-computational collaboration on structural and functional modeling that produced an atomic detail description of a bacterial bioenergetic organelle, the chromatophore. Software advancements necessitated by this project have led to significant performance and feature advances, including hardware-accelerated cinematic ray tracing and instanced visualizations for efficient cell-scale modeling. The energy conversion steps depicted feature an integration of function from electronic to cell levels, spanning nearly 12 orders of magnitude in time scales. This atomic detail description uniquely enables a modern retelling of one of humanity's earliest stories-the interplay between light and life.
Collapse
Affiliation(s)
- Melih Sener
- Beckman Institute, University of Illinois at Urbana-Champaign
| | - Stuart Levy
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - John E. Stone
- Beckman Institute, University of Illinois at Urbana-Champaign
| | - AJ Christensen
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | | | - Robert Patterson
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - Kalina Borkiewicz
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - Jeffrey Carpenter
- Advanced Visualization Laboratory, NCSA, University of Illinois at Urbana-Champaign
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, U.K
| | | | - Donna Cox
- Beckman Institute, University of Illinois at Urbana-Champaign
| |
Collapse
|
10
|
Singharoy A, Maffeo C, Delgado-Magnero KH, Swainsbury DJK, Sener M, Kleinekathöfer U, Vant JW, Nguyen J, Hitchcock A, Isralewitz B, Teo I, Chandler DE, Stone JE, Phillips JC, Pogorelov TV, Mallus MI, Chipot C, Luthey-Schulten Z, Tieleman DP, Hunter CN, Tajkhorshid E, Aksimentiev A, Schulten K. Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell 2019; 179:1098-1111.e23. [PMID: 31730852 PMCID: PMC7075482 DOI: 10.1016/j.cell.2019.10.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.
Collapse
Affiliation(s)
- Abhishek Singharoy
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA.
| | - Christopher Maffeo
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karelia H Delgado-Magnero
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - John W Vant
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA
| | - Jonathan Nguyen
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Barry Isralewitz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivan Teo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danielle E Chandler
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John E Stone
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - James C Phillips
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taras V Pogorelov
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - M Ilaria Mallus
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Christophe Chipot
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Laboratoire International Associé CNRS-UIUC, UMR 7019, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
| | - Zaida Luthey-Schulten
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Departments of Biochemistry, Chemistry, Bioengineering, and Pharmacology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Aleksei Aksimentiev
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Klaus Schulten
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Dissecting the cytochrome c 2-reaction centre interaction in bacterial photosynthesis using single molecule force spectroscopy. Biochem J 2019; 476:2173-2190. [PMID: 31320503 PMCID: PMC6688529 DOI: 10.1042/bcj20170519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022]
Abstract
The reversible docking of small, diffusible redox proteins onto a membrane protein complex is a common feature of bacterial, mitochondrial and photosynthetic electron transfer (ET) chains. Spectroscopic studies of ensembles of such redox partners have been used to determine ET rates and dissociation constants. Here, we report a single-molecule analysis of the forces that stabilise transient ET complexes. We examined the interaction of two components of bacterial photosynthesis, cytochrome c 2 and the reaction centre (RC) complex, using dynamic force spectroscopy and PeakForce quantitative nanomechanical imaging. RC-LH1-PufX complexes, attached to silicon nitride AFM probes and maintained in a photo-oxidised state, were lowered onto a silicon oxide substrate bearing dispersed, immobilised and reduced cytochrome c 2 molecules. Microscale patterns of cytochrome c 2 and the cyan fluorescent protein were used to validate the specificity of recognition between tip-attached RCs and surface-tethered cytochrome c 2 Following the transient association of photo-oxidised RC and reduced cytochrome c 2 molecules, retraction of the RC-functionalised probe met with resistance, and forces between 112 and 887 pN were required to disrupt the post-ET RC-c 2 complex, depending on the retraction velocities used. If tip-attached RCs were reduced instead, the probability of interaction with reduced cytochrome c 2 molecules decreased 5-fold. Thus, the redox states of the cytochrome c 2 haem cofactor and RC 'special pair' bacteriochlorophyll dimer are important for establishing a productive ET complex. The millisecond persistence of the post-ET cytochrome c 2[oxidised]-RC[reduced] 'product' state is compatible with rates of cyclic photosynthetic ET, at physiologically relevant light intensities.
Collapse
|
12
|
Noble JM, Lubieniecki J, Savitzky BH, Plitzko J, Engelhardt H, Baumeister W, Kourkoutis LF. Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria. Mol Microbiol 2018; 109:812-825. [PMID: 29995992 DOI: 10.1111/mmi.14077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 01/20/2023]
Abstract
The size of whole Rhodobacter sphaeroides prevents 3D visualization of centermost chromatophores in their native environment. This study combines cryo-focused ion beam milling with cryo-electron tomography to probe vesicle architecture both in situ and in 3D. Developing chromatophores are membrane-bound buds that remain in topological continuity with the cytoplasmic membrane and detach into vesicles when mature. Mature chromatophores closest to the cell wall are typically isolated vesicles, whereas centermost chromatophores are either linked to neighboring chromatophores or contain smaller, budding structures. Isolated chromatophores comprised a minority of centermost chromatophores. Connections between vesicles in growing bacteria are through ~10 nm-long, ~5 nm-wide linkers, and are thus physical rather than functional in terms of converting photons to ATP. In cells in the stationary phase, chromatophores fuse with neighboring vesicles, lose their spherical structure, and greatly increase in volume. The fusion and morphological changes seen in older bacteria are likely a consequence of the aging process, and are not representative of connectivity in healthy R. sphaeroides. Our results suggest that chromatophores can adopt either isolated or connected morphologies within a single bacterium. Revealing the organization of chromatophore vesicles throughout the cell is an important step in understanding the photosynthetic mechanisms in R. sphaeroides.
Collapse
Affiliation(s)
- Jade M Noble
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Johann Lubieniecki
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Jürgen Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Harald Engelhardt
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.,Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA
| |
Collapse
|
13
|
Swainsbury DJK, Proctor MS, Hitchcock A, Cartron ML, Qian P, Martin EC, Jackson PJ, Madsen J, Armes SP, Hunter CN. Probing the local lipid environment of the Rhodobacter sphaeroides cytochrome bc 1 and Synechocystis sp. PCC 6803 cytochrome b 6f complexes with styrene maleic acid. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:215-225. [PMID: 29291373 PMCID: PMC5805856 DOI: 10.1016/j.bbabio.2017.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 01/21/2023]
Abstract
Intracytoplasmic vesicles (chromatophores) in the photosynthetic bacterium Rhodobacter sphaeroides represent a minimal structural and functional unit for absorbing photons and utilising their energy for the generation of ATP. The cytochrome bc1 complex (cytbc1) is one of the four major components of the chromatophore alongside the reaction centre-light harvesting 1-PufX core complex (RC-LH1-PufX), the light-harvesting 2 complex (LH2), and ATP synthase. Although the membrane organisation of these complexes is known, their local lipid environments have not been investigated. Here we utilise poly(styrene-alt-maleic acid) (SMA) co-polymers as a tool to simultaneously determine the local lipid environments of the RC-LH1-PufX, LH2 and cytbc1 complexes. SMA has previously been reported to effectively solubilise complexes in lipid-rich membrane regions whilst leaving lipid-poor ordered protein arrays intact. Here we show that SMA solubilises cytbc1 complexes with an efficiency of nearly 70%, whereas solubilisation of RC-LH1-PufX and LH2 was only 10% and 22% respectively. This high susceptibility of cytbc1 to SMA solubilisation is consistent with this complex residing in a locally lipid-rich region. SMA solubilised cytbc1 complexes retain their native dimeric structure and co-purify with 56 ± 6 phospholipids from the chromatophore membrane. We extended this approach to the model cyanobacterium Synechocystis sp. PCC 6803, and show that the cytochrome b6f complex (cytb6f) and Photosystem II (PSII) complexes are susceptible to SMA solubilisation, suggesting they also reside in lipid-rich environments. Thus, lipid-rich membrane regions could be a general requirement for cytbc1/cytb6f complexes, providing a favourable local solvent to promote rapid quinol/quinone binding and release at the Q0 and Qi sites. SMA preferentially solubilises cytbc1 from chromatophore membranes. Solubilised cytbc1 SMALPs contain dimeric complexes co-purified with 56 lipids. SMA-resistant fractions contain RC-LH1-PufX and LH2 rich membrane patches. The Rba. sphaeroides cytbc1 complex is likely to reside in a lipid-rich environment. Similar results for Synechocystis suggest cytbc1/b6f may be universally lipid-rich.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Matthew S Proctor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Michaël L Cartron
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Jeppe Madsen
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|