1
|
Vugmeyster L, Au DF, Frazier B, Qiang W, Ostrovsky D. Rigidifying of the internal dynamics of amyloid-beta fibrils generated in the presence of synaptic plasma vesicles. Phys Chem Chem Phys 2024; 26:5466-5478. [PMID: 38277177 PMCID: PMC10956644 DOI: 10.1039/d3cp04824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We investigated the changes in internal flexibility of amyloid-β1-40 (Aβ) fibrils grown in the presence of rat synaptic plasma vesicles. The fibrils are produced using a modified seeded growth protocol, in which the Aβ concentration is progressively increased at the expense of the decreased lipid to protein ratio. The morphologies of each generation are carefully assessed at several fibrils' growth time points using transmission electron microscopy. The side-chain dynamics in the fibrils is investigated using deuterium solid-state NMR measurements, with techniques spanning line shapes analysis and several NMR relaxation rates measurements. The dynamics is probed in the site-specific fashion in the hydrophobic C-terminal domain and the disordered N-terminal domain. An overall strong rigidifying effect is observed in comparison with the wild-type fibrils generated in the absence of the membranes. In particular, the overall large-scale fluctuations of the N-terminal domain are significantly reduced, and the activation energies of rotameric inter-conversion in methyl-bearing side-chains of the core (L17, L34, M35, V36), as well as the ring-flipping motions of F19 are increased, indicating a restricted core environment. Membrane-induced flexibility changes in Aβ aggregates can be important for the re-alignment of protein aggregates within the membrane, which in turn would act as a disruption pathway of the bilayers' integrity.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO, USA, 80204.
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver, CO, USA, 80204.
| | - Bailey Frazier
- Department of Chemistry, University of Colorado Denver, Denver, CO, USA, 80204.
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Binghamton, New York, USA, 13902
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO, USA, 80204
| |
Collapse
|
2
|
Rodgers A, Sawaged M, Ostrovsky D, Vugmeyster L. Effect of Cross-Seeding of Wild-Type Amyloid-β 1-40 Peptides with Post-translationally Modified Fibrils on Internal Dynamics of the Fibrils Using Deuterium Solid-State NMR. J Phys Chem B 2023; 127:2887-2899. [PMID: 36952330 PMCID: PMC10257444 DOI: 10.1021/acs.jpcb.2c07817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Post-translationally modified (PTM) amyloid-β (Aβ) species can play an important role in modulating Alzheimer's disease pathology. These relatively less populated modifications can cross-seed the wild-type Aβ peptides to produce fibrils that retain many structural and functional features of the original PTM variants. We focus on studies of internal flexibility in the cross-seeded Aβ1-40 fibrils originating from seeding with two PTM variants with modifications in the disordered N-terminal domain: ΔE3 truncation and S8-phosphorylation. We employ an array of 2H solid-state NMR techniques, including line shape analysis over a broad temperature range, longitudinal relaxation, and quadrupolar CPMG, to assess the dynamics of the cross-seeded fibrils. The focus is placed on selected side-chain sites in the disordered N-terminal domain (G9 and V12) and hydrophobic core methyl and aromatic groups (L17, L34, M35, V36, and F19). We find that many of the essential features of the dynamics present in the original PTM seeds persist in the cross-seeded fibrils, and several of the characteristic features are even enhanced. This is particularly true for the activation energies of the rotameric motions and large-scale rearrangements of the N-terminal domain. Thus, our results on the dynamics complement prior structural and cell toxicity studies, suggesting that many PTM Aβ species can aggressively cross-seed the wild-type peptide in a manner that propagates the PTM's signature.
Collapse
Affiliation(s)
- Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Matthew Sawaged
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
3
|
Gauto DF, Lebedenko OO, Becker LM, Ayala I, Lichtenecker R, Skrynnikov NR, Schanda P. Aromatic ring flips in differently packed ubiquitin protein crystals from MAS NMR and MD. J Struct Biol X 2022; 7:100079. [PMID: 36578472 PMCID: PMC9791609 DOI: 10.1016/j.yjsbx.2022.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Probing the dynamics of aromatic side chains provides important insights into the behavior of a protein because flips of aromatic rings in a protein's hydrophobic core report on breathing motion involving a large part of the protein. Inherently invisible to crystallography, aromatic motions have been primarily studied by solution NMR. The question how packing of proteins in crystals affects ring flips has, thus, remained largely unexplored. Here we apply magic-angle spinning NMR, advanced phenylalanine 1H-13C/2H isotope labeling and MD simulation to a protein in three different crystal packing environments to shed light onto possible impact of packing on ring flips. The flips of the two Phe residues in ubiquitin, both surface exposed, appear remarkably conserved in the different crystal forms, even though the intermolecular packing is quite different: Phe4 flips on a ca. 10-20 ns time scale, and Phe45 are broadened in all crystals, presumably due to µs motion. Our findings suggest that intramolecular influences are more important for ring flips than intermolecular (packing) effects.
Collapse
Affiliation(s)
- Diego F. Gauto
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France
- ICSN, CNRS UPR2301, Univ. Paris-Saclay, Gif-sur-Yvette, France
| | - Olga O. Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Lea Marie Becker
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Isabel Ayala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France
| | - Roman Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA
| | - Paul Schanda
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
4
|
Meirovitch E, Liang Z, Freed JH. The N-Terminal Domain of Aβ 40-Amyloid Fibril: The MOMD Perspective of its Dynamic Structure from NMR Lineshape Analysis. J Phys Chem B 2022; 126:1202-1211. [PMID: 35128920 PMCID: PMC8908910 DOI: 10.1021/acs.jpcb.1c10131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed the stochastic microscopic-order-macroscopic-disorder (MOMD) approach for elucidating dynamic structures in the solid-state from 2H NMR lineshapes. In MOMD, the probe experiences an effective/collective motional mode. The latter is described by a potential, u, which represents the local spatial-restrictions, a local-motional diffusion tensor, R, and key features of local geometry. Previously we applied MOMD to the well-structured core domain of the 3-fold-symmetric twisted polymorph of the Aβ40-amyloid fibril. Here, we apply it to the N-terminal domain of this fibril. We find that the dynamic structures of the two domains are largely similar but differ in the magnitude and complexity of the key physical parameters. This interpretation differs from previous multisimple-mode (MSM) interpretations of the same experimental data. MSM used for the two domains different combinations of simple motional modes taken to be independent. For the core domain, MOMD and MSM disagree on the character of the dynamic structure. For the N-terminal domain, they even disagree on whether this chain segment is structurally ordered (MOMD finds that it is), and whether it undergoes a phase transition at 260 K where bulklike water located in the fibril matrix freezes (MOMD finds that it does not). These are major differences associated with an important system. While the MOMD description is a physically sound one, there are drawbacks in the MSM descriptions. The results obtained in this study promote our understanding of the dynamic structure of protein aggregates. Thus, they contribute to the effort to pharmacologically control neurodegenerative disorders believed to be caused by such aggregates.
Collapse
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Zhichun Liang
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Jack H. Freed
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
5
|
Vugmeyster L, Au DF, Smith MC, Ostrovsky D. Comparative Hydrophobic Core Dynamics Between Wild-Type Amyloid-β Fibrils, Glutamate-3 Truncation, and Serine-8 Phosphorylation. Chemphyschem 2022; 23:e202100709. [PMID: 34837296 PMCID: PMC9484291 DOI: 10.1002/cphc.202100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Post-translational modifications (PTMs) of amyloid-β (Aβ) species are implicated in the modulation of overall toxicities and aggregation propensities. We investigated the internal dynamics in the hydrophobic core of the truncated ΔE3 mutant fibrils of Aβ1-40 and compared them with prior and new data for wild-type fibrils as well as with phosphorylated S8 fibrils. Deuteron static solid-state NMR techniques, spanning line-shape analysis, longitudinal relaxation, and chemical exchange saturation transfer methods, were employed to assess the rotameric jumps of several methyl-bearing and aromatic groups in the core of the fibrils. Taken together, the results indicate the rather significant influence of the PTMs on the hydrophobic core dynamics, which propagates far beyond the local site of the chemical modification. The phosphorylated S8 fibrils display an overall rigidifying of the core based on the higher activation barriers of motions than the wild-type fibrils, whereas the ΔE3 fibrils induce a broader variety of changes, some of which are thermodynamic in nature rather than the kinetic ones.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Matthew C. Smith
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
6
|
Huang Y, Liu Z, Liu S, Song F, Jin Y. Studies on the mechanism of Panax Ginseng in the treatment of deficiency of vital energy dementia rats based on urine metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123115. [PMID: 35042148 DOI: 10.1016/j.jchromb.2022.123115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Panax Ginseng (PG) has been used to strengthen memory and physique for thousands of years, because its main components ginsenosides (GS) and ginseng polysaccharides (GP) play a major role, but its mechanism is not clear. In this study, a rat model of dementia with vital energy deficiency (DED) was established through intraperitoneal injection with D-galactose and AlCl3 and combined with exhaustive swimming. Pharmacological studies and the urine metabolomics based on ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) were employed for evaluation the efficacy of PG and exploring this treatment mechanism. Through urine metabolic profiling, it can be seen that DED rats after PG administration are close to normal group (NG) rats, and PG can regulate the in vivo status of DED rats which tend to NG. The results of behavioral, biochemical indicators and immunohistochemistry further verified the above results, and the mechanism of action of each component is refined. Ultimately, we believe that the mechanism of PG in the treatment of DED is that ginsenosides (GS) intervenes in phenylalanine tryptophan and tyrosine metabolism, stimulates dopamine production, inhibits Aβ deposition and neuroinflammation; and that ginseng polysaccharides (GP) provides energy to strengthen the TCA cycle and improve immune capacity.
Collapse
Affiliation(s)
- Yu Huang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhiqiang Liu
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shu Liu
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Vugmeyster L, Au DF, Ostrovsky D, Rickertsen DRL, Reed SM. Dynamics of Serine-8 Side-Chain in Amyloid-β Fibrils and Fluorenylmethyloxycarbonyl Serine Amino Acid, Investigated by Solid-State Deuteron NMR. J Phys Chem B 2020; 124:4723-4731. [PMID: 32396356 DOI: 10.1021/acs.jpcb.0c02490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Serine side-chains are strategic sites of post-translational modifications, and it is important to establish benchmarks of their internal dynamics. In this work, we compare the dynamics of serine side-chains in several biologically important systems: serine-8 in the disordered domain of Aβ1-40 fibrils in the hydrated and dry states and fluorenylmethyloxycarbonyl (Fmoc) serine with the bulky group that mimics the hydrophobicity of the fibril contacts yet lacks the complexity of the protein system. Using deuterium solid-state NMR static line shape and longitudinal relaxation techniques in the 310 to 180 K temperature range, we compare the main features of the dynamics in these systems. The main motional modes in the fibrils are large-scale fluctuations in the hydrated state of the fibrils as well as local motions such as 3-site jumps of the Cβ deuterons at high temperatures and small-angle fluctuations of the Cα-Cβ axis at low temperatures. In the hydrated fibrils, two distinct states are present with vastly different extents of large-scale diffusive motions and 3-site-jump rate constants. The hydrated state at the physiological conditions is dominated by the "free" state undergoing large-scale diffusive motions and very fast local 3-site jumps, while in the "bound" state, these large-scale motions are quenched due to transient inter- and intramolecular interactions. Additionally, in the bound state, the 3-site-jump motions are orders of magnitude slower. Details of the dynamics in the serine side-chain are dependent on fine structural features and hydration levels of the systems.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, Colorado 80204, United States
| | | | - Scott M Reed
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| |
Collapse
|
8
|
Stephens AD, Kaminski Schierle GS. The role of water in amyloid aggregation kinetics. Curr Opin Struct Biol 2019; 58:115-123. [PMID: 31299481 DOI: 10.1016/j.sbi.2019.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
Abstract
The role of water in protein function and aggregation is highly important and may hold some answers to understanding initiation of misfolding diseases such as Parkinson's, Alzheimer's and Huntington's where soluble intrinsically disordered proteins (IDPs) aggregate into fibrillar structures. IDPs are highly dynamic and have larger solvent exposed areas compared to globular proteins, meaning they make and break hydrogen bonds with the surrounding water more frequently. The mobility of water can be altered by presence of ions, sugars, osmolytes, proteins and membranes which differ in different cell types, cell compartments and also as cells age. A reduction in water mobility and thus protein mobility enhances the probability that IDPs can associate to form intermolecular bonds and propagate into aggregates. This poses an interesting question as to whether localised water mobility inside cells can influence the propensity of an IDP to aggregate and furthermore whether it can influence fibril polymorphism and disease outcome.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Gabriele S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
9
|
Vugmeyster L, Au DF, Ostrovsky D, Fu R. Deuteron Solid-State NMR Relaxation Measurements Reveal Two Distinct Conformational Exchange Processes in the Disordered N-Terminal Domain of Amyloid-β Fibrils. Chemphyschem 2019; 20:1680-1689. [PMID: 31087613 PMCID: PMC6663588 DOI: 10.1002/cphc.201900363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/12/2019] [Indexed: 12/26/2022]
Abstract
We employed deuterium solid-state NMR techniques under static conditions to discern the details of the μs-ms timescale motions in the flexible N-terminal subdomain of Aβ1-40 amyloid fibrils, which spans residues 1-16. In particular, we utilized a rotating frame (R1ρ ) and the newly developed time domain quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) relaxation measurements at the selectively deuterated side chains of A2, H6, and G9. The two experiments are complementary in terms of probing somewhat different timescales of motions, governed by the tensor parameters and the sampling window of the magnetization decay curves. The results indicated two mobile "free" states of the N-terminal domain undergoing global diffusive motions, with isotropic diffusion coefficients of 0.7-1 ⋅ 108 and 0.3-3 ⋅ 106 ad2 s-1 . The free states are also involved in the conformational exchange with a single bound state, in which the diffusive motions are quenched, likely due to transient interactions with the structured hydrophobic core. The conformational exchange rate constants are 2-3 ⋅ 105 s-1 and 2-3 ⋅ 104 s-1 for the fast and slow diffusion free states, respectively.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO, USA, 80204
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver CO, USA, 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO, USA, 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL, 32310
| |
Collapse
|
10
|
Meirovitch E, Freed JH. Local ordering and dynamics in anisotropic media by magnetic resonance: from liquid crystals to proteins. LIQUID CRYSTALS 2019; 47:1926-1954. [PMID: 32435078 PMCID: PMC7239324 DOI: 10.1080/02678292.2019.1622158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 06/11/2023]
Abstract
Magnetic resonance methods have been used extensively for over 50 years to elucidate molecular structure and dynamics of liquid crystals (LCs), providing information quite unique in its rigour and extent. The ESR- or NMR-active probe is often a solute molecule reporting on characteristics associated with the surrounding (LC) medium, which exerts the spatial restrictions on the probe. The theoretical approaches developed for LCs are applicable to anisotropic media in general. Of particular interest is the interior space of a globular protein labelled, e.g. with a nitroxide moiety or a 15N-1H bond. The ESR or NMR label plays the role of the probe and the internal protein surroundings the role of the anisotropic medium. A general feature of the restricted motions is the local ordering, i.e. the nature, magnitude and symmetry of the spatial restraints exerted at the site of the moving probe. This property is the main theme of the present review article. We outline its treatment in our work from both the theoretical and the experimental points of view, highlighting the new physical insights gained. Our illustrations include studies on thermotropic (nematic and smectic) and lyotropic liquid crystals formed by phospholipids, in addition to studies of proteins.
Collapse
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jack H Freed
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
Hu ZW, Vugmeyster L, Au DF, Ostrovsky D, Sun Y, Qiang W. Molecular structure of an N-terminal phosphorylated β-amyloid fibril. Proc Natl Acad Sci U S A 2019; 116:11253-11258. [PMID: 31097588 PMCID: PMC6561245 DOI: 10.1073/pnas.1818530116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural polymorphism in β-amyloid (Aβ) plaques from Alzheimer disease (AD) has been recognized as an important pathological factor. Plaques from sporadic AD patients contain fibrillar deposits of various amyloid proteins/peptides, including posttranslational modified Aβ (PTM-Aβ) subtypes. Although many PTM-Aβs were shown to accelerate the fibrillation process, increase neuronal cytotoxicity of aggregates, or enhance the stability of fibrils, the contribution of PTM-Aβs to structural polymorphisms and their pathological roles remains unclear. We report here the NMR-based structure for the Ser-8-phosphorylated 40-residue Aβ (pS8-Aβ40) fibrils, which shows significant difference to the wild-type fibrils, with higher cross-seeding efficiency and thermodynamic stability. Given these physicochemical properties, the structures originated from pS8-Aβ40 fibrils may potentially dominate the polymorphisms in the mixture of wild-type and phosphorylated Aβ deposits. Our results imply that Aβ subtypes with "seeding-prone" properties may influence the polymorphisms of amyloid plaques through the cross-seeding process.
Collapse
Affiliation(s)
- Zhi-Wen Hu
- Department of Chemistry, Binghamton University, Binghamton, NY 13902
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204;
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO 80204
| | - Yan Sun
- Health Science Core Facility, Small Scale System Integration and Packaging Center, Binghamton University, Binghamton, NY 13902
| | - Wei Qiang
- Department of Chemistry, Binghamton University, Binghamton, NY 13902;
| |
Collapse
|
12
|
Au DF, Ostrovsky D, Fu R, Vugmeyster L. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils. J Biol Chem 2019; 294:5840-5853. [PMID: 30737281 DOI: 10.1074/jbc.ra118.006559] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/08/2019] [Indexed: 11/06/2022] Open
Abstract
Amyloid fibril deposits observed in Alzheimer's disease comprise amyloid-β (Aβ) protein possessing a structured hydrophobic core and a disordered N-terminal domain (residues 1-16). The internal flexibility of the disordered domain is likely essential for Aβ aggregation. Here, we used 2H static solid-state NMR methods to probe the dynamics of selected side chains of the N-terminal domain of Aβ1-40 fibrils. Line shape and relaxation data suggested a two-state model in which the domain's free state undergoes a diffusive motion that is quenched in the bound state, likely because of transient interactions with the structured C-terminal domain. At 37 °C, we observed freezing of the dynamics progressively along the Aβ sequence, with the fraction of the bound state increasing and the rate of diffusion decreasing. We also found that without solvation, the diffusive motion is quenched. The solvent acted as a plasticizer reminiscent of its role in the onset of global dynamics in globular proteins. As the temperature was lowered, the fraction of the bound state exhibited sigmoidal behavior. The midpoint of the freezing curve coincided with the bulk solvent freezing for the N-terminal residues and increased further along the sequence. Using 2H R 1ρ measurements, we determined the conformational exchange rate constant between the free and bound states under physiological conditions. Zinc-induced aggregation leads to the enhancement of the dynamics, manifested by the faster conformational exchange, faster diffusion, and lower freezing-curve midpoints.
Collapse
Affiliation(s)
- Dan Fai Au
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado, Denver, Colorado 80204
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, Florida 32310
| | - Liliya Vugmeyster
- From the Department of Chemistry, University of Colorado, Denver, Colorado 80204.
| |
Collapse
|
13
|
Vugmeyster L, Ostrovsky D. Basic experiments in 2H static NMR for the characterization of protein side-chain dynamics. Methods 2018; 148:136-145. [PMID: 29705208 PMCID: PMC6133770 DOI: 10.1016/j.ymeth.2018.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/02/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022] Open
Abstract
The focus of this review is the basic methodology for applications of static deuteron NMR for studies of dynamics in the side chains of proteins. We review experimental approaches for the measurements of static line shapes and relaxation rates as well as signal enhancement strategies using the multiple echo acquisition scheme. Further, we describe computational strategies for modeling jump and diffusive motions underlying experimental data. Applications are chosen from studies of amyloid fibrils comprising the amyloid-β protein.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA.
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|