1
|
Titov E. The Role of Double Excitations in Exciton Dynamics of Multiazobenzenes: Trisazobenzenophane as a Test Case. J Phys Chem Lett 2024; 15:7482-7488. [PMID: 39011968 DOI: 10.1021/acs.jpclett.4c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Molecular exciton dynamics underlie energy and charge transfer processes in organic multichromophoric systems. A particularly interesting class of the latter is multiphotochromic systems made of molecules capable of photochemical transformations. Exciton dynamics in assemblies of photoswitches have been recently investigated using either the molecular exciton model or supermolecular configuration interaction (CI) singles, both approaches being based on a semiempirical Hamiltonian and combined with surface hopping molecular dynamics. Here, we study how inclusion of double excitations in nonadiabatic dynamics simulations affects exciton dynamics of multiazobenzenes, using trisazobenzenophane as an example. We find that both CI singles and CI singles and doubles yield virtually the same time scale of dynamical exciton localization, ∼50 fs for the studied multiazobenzene. However, inclusion of double excitations considerably affects the excited state lifetimes and isomerization quantum yields.
Collapse
Affiliation(s)
- Evgenii Titov
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
2
|
McGehee K, Saito K, Kwaria D, Minamikawa H, Norikane Y. Releasing a bound molecular spring with light: a visible light-triggered photosalient effect tied to polymorphism. Phys Chem Chem Phys 2024; 26:6834-6843. [PMID: 38328882 DOI: 10.1039/d3cp04691e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Here we present a study on the solid state properties of trans tetra-ortho-bromo azobenzene (4Br-Azo). Two distinct crystal polymorphs were identified: the α-phase and β-phase. Notably, only the β-phase exhibited an extraordinary photosalient effect (jumping/breaking) upon exposure to a wide range of visible light. Powder X-ray diffraction and Raman spectroscopy revealed that the β-phase is metastable and can transition to the α-phase when subjected to specific stimuli like heat and light. Furthermore, single crystal X-ray diffraction and density functional theory calculations highlighted the significance of a highly strained conformer in the β-phase, showing that the metastability of the phase potentially arises from relieving this strain. This metastability leads to a light induced phase transition, which appears to be the cause of the photosalient effect in these crystals. Interestingly the polymorphism at the core of 4Br-Azo's dynamic behavior is based on different arrangements of halogen based intermolecular interactions. It is possible that continued study on combining visible light capturing chromophores with halogen interaction-based polymorphism will lead to the discovery of even more visible light controlled dynamic crystal materials.
Collapse
Affiliation(s)
- Keegan McGehee
- Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Koichiro Saito
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Dennis Kwaria
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Hiroyuki Minamikawa
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Yasuo Norikane
- Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
3
|
Titov E, Beqiraj A. Exciton States of Azobenzene Aggregates: A First‐Principles Study. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Evgenii Titov
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry Karl‐Liebknecht‐Straße 24‐25 14476 Potsdam Germany
| | - Alkit Beqiraj
- University of Potsdam, Institute of Chemistry, Theoretical Chemistry Karl‐Liebknecht‐Straße 24‐25 14476 Potsdam Germany
| |
Collapse
|
4
|
Spiropyran/Merocyanine Amphiphile in Various Solvents: A Joint Experimental–Theoretical Approach to Photophysical Properties and Self-Assembly. Int J Mol Sci 2022; 23:ijms231911535. [PMID: 36232836 PMCID: PMC9569490 DOI: 10.3390/ijms231911535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022] Open
Abstract
This joint experimental-theoretical work focuses on molecular and photophysical properties of the spiropyran-containing amphiphilic molecule in organic and aqueous solutions. Being dissolved in tested organic solvents, the system demonstrates positive photochromism, i.e., upon UV stimulus the colorless spiropyran form is transformed into colorful merocyanine isomer. However, the aqueous solution of the amphiphile possesses a negative photochromism: the orange-red merocyanine form becomes thermodynamically more stable in water, and both UV and vis stimuli lead to the partial or complete photobleaching of the solution. The explanation of this phenomenon is given on the basis of density functional theory calculations and classical modeling including thermodynamic integration. The simulations reveal that stabilization of merocyanine in water proceeds with the energy of ca. 70 kJ mol−1, and that the Helmholtz free energy of hydration of merocyanine form is 100 kJ mol−1 lower as compared to the behavior of SP isomer in water. The explanation of such a difference lies in the molecular properties of the merocyanine: after ring-opening reaction this molecule transforms into a zwitterionic form, as evidenced by the electrostatic potential plotted around the opened form. The presence of three charged groups on the periphery of a flat conjugated backbone stimulates the self-assembly of merocyanine molecules in water, ending up with the formation of elongated associates with stack-like building blocks, as shown in molecular dynamics simulations of the aqueous solution with the concentration above critical micelle concentration. Our quantitative evaluation of the hydrophilicity switching in spiropyran/merocyanine containing surfactants may prompt the search for new systems, including colloidal and polymeric ones, aiming at remote tuning of their morphology, which could give new promising shapes and patterns for the needs of modern nanotechnology.
Collapse
|
5
|
On the Computational Design of Azobenzene-Based Multi-State Photoswitches. Int J Mol Sci 2022; 23:ijms23158690. [PMID: 35955820 PMCID: PMC9369132 DOI: 10.3390/ijms23158690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
In order to theoretically design multi-state photoswitches with specific properties, an exhaustive computational study is first carried out for an azobenzene dimer that has been recently synthesized and experimentally studied. This study allows for a full comprehension of the factors that govern the photoactivated isomerization processes of these molecules so to provide a conceptual/computational protocol that can be applied to generic multi-state photoswitches. From this knowledge a new dimer with a similar chemical design is designed and also fully characterized. Our theoretical calculations predict that the new dimer proposed is one step further in the quest for a double photoswitch, where the four metastable isomers could be selectively interconverted through the use of different irradiation sequences.
Collapse
|
6
|
Kumar P, Gupta D, Grewal S, Srivastava A, Kumar Gaur A, Venkataramani S. Multiple Azoarenes Based Systems - Photoswitching, Supramolecular Chemistry and Application Prospects. CHEM REC 2022; 22:e202200074. [PMID: 35860915 DOI: 10.1002/tcr.202200074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Indexed: 11/05/2022]
Abstract
In the recent decades, the investigations on photoresponsive molecular systems with multiple azoarenes are quite popular in diverse perspectives ranging from fundamental understanding of multiple photoswitches, supramolecular chemistry, and various application prospects. In fact, several insightful and conceptual designs of such systems were investigated with architectural distinctions. In particular, the demonstration of applications such as data storage with the help of multistate or orthogonal photoswitches, light modulation of catalysis via cooperative switching, sensors using supramolecular host-guest interactions, and materials such as liquid crystals, grating, actuators, etc. are some of the milestones in this area. Herein, we cover the recent advancements in the research areas of multiazoarenes containing systems that have been classified into Type-1 {linear, non-linear, and core-based (A)}, Type-2 {tripodal C3 -symmetric (C3)} and Type-3 {macrocyclic (M)} structural motifs.
Collapse
Affiliation(s)
- Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Anjali Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| |
Collapse
|
7
|
Koch M, Saphiannikova M, Guskova O. Cyclic Photoisomerization of Azobenzene in Atomistic Simulations: Modeling the Effect of Light on Columnar Aggregates of Azo Stars. Molecules 2021; 26:7674. [PMID: 34946756 PMCID: PMC8709326 DOI: 10.3390/molecules26247674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
This computational study investigates the influence of light on supramolecular aggregates of three-arm azobenzene stars. Every star contains three azobenzene (azo) moieties, each able to undergo reversible photoisomerization. In solution, the azo stars build column-shaped supramolecular aggregates. Previous experimental works report severe morphological changes of these aggregates under UV-Vis light. However, the underlying molecular mechanisms are still debated. Here we aim to elucidate how light affects the structure and stability of the columnar stacks on the molecular scale. The system is investigated using fully atomistic molecular dynamics (MD) simulations. To implement the effects of light, we first developed a stochastic model of the cyclic photoisomerization of azobenzene. This model reproduces the collective photoisomerization kinetics of the azo stars in good agreement with theory and previous experiments. We then apply light of various intensities and wavelengths on an equilibrated columnar stack of azo stars in water. The simulations indicate that the aggregate does not break into separate fragments upon light irradiation. Instead, the stack develops defects in the form of molecular shifts and reorientations and, as a result, it eventually loses its columnar shape. The mechanism and driving forces behind this order-disorder structural transition are clarified based on the simulations. In the end, we provide a new interpretation of the experimentally observed morphological changes.
Collapse
Affiliation(s)
- Markus Koch
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
| | - Marina Saphiannikova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
8
|
Koch M, Saphiannikova M, Guskova O. Columnar Aggregates of Azobenzene Stars: Exploring Intermolecular Interactions, Structure, and Stability in Atomistic Simulations. Molecules 2021; 26:7598. [PMID: 34946680 PMCID: PMC8703797 DOI: 10.3390/molecules26247598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
We present a simulation study of supramolecular aggregates formed by three-arm azobenzene (Azo) stars with a benzene-1,3,5-tricarboxamide (BTA) core in water. Previous experimental works by other research groups demonstrate that such Azo stars assemble into needle-like structures with light-responsive properties. Disregarding the response to light, we intend to characterize the equilibrium state of this system on the molecular scale. In particular, we aim to develop a thorough understanding of the binding mechanism between the molecules and analyze the structural properties of columnar stacks of Azo stars. Our study employs fully atomistic molecular dynamics (MD) simulations to model pre-assembled aggregates with various sizes and arrangements in water. In our detailed approach, we decompose the binding energies of the aggregates into the contributions due to the different types of non-covalent interactions and the contributions of the functional groups in the Azo stars. Initially, we investigate the origin and strength of the non-covalent interactions within a stacked dimer. Based on these findings, three arrangements of longer columnar stacks are prepared and equilibrated. We confirm that the binding energies of the stacks are mainly composed of π-π interactions between the conjugated parts of the molecules and hydrogen bonds formed between the stacked BTA cores. Our study quantifies the strength of these interactions and shows that the π-π interactions, especially between the Azo moieties, dominate the binding energies. We clarify that hydrogen bonds, which are predominant in BTA stacks, have only secondary energetic contributions in stacks of Azo stars but remain necessary stabilizers. Both types of interactions, π-π stacking and H-bonds, are required to maintain the columnar arrangement of the aggregates.
Collapse
Affiliation(s)
- Markus Koch
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
| | - Marina Saphiannikova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
9
|
Su L, Sun J, Ding F, Gao X, Zheng L. Molecular insight into photoresponsive surfactant regulated reversible emulsification and demulsification processes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Titov E. On the Low-Lying Electronically Excited States of Azobenzene Dimers: Transition Density Matrix Analysis. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26144245. [PMID: 34299521 PMCID: PMC8303869 DOI: 10.3390/molecules26144245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022]
Abstract
Azobenzene-containing molecules may associate with each other in systems such as self-assembled monolayers or micelles. The interaction between azobenzene units leads to a formation of exciton states in these molecular assemblies. Apart from local excitations of monomers, the electronic transitions to the exciton states may involve charge transfer excitations. Here, we perform quantum chemical calculations and apply transition density matrix analysis to quantify local and charge transfer contributions to the lowest electronic transitions in azobenzene dimers of various arrangements. We find that the transitions to the lowest exciton states of the considered dimers are dominated by local excitations, but charge transfer contributions become sizable for some of the lowest ππ* electronic transitions in stacked and slip-stacked dimers at short intermolecular distances. In addition, we assess different ways to partition the transition density matrix between fragments. In particular, we find that the inclusion of the atomic orbital overlap has a pronounced effect on quantifying charge transfer contributions if a large basis set is used.
Collapse
Affiliation(s)
- Evgenii Titov
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
11
|
Diez Cabanes V, Van Dyck C, Osella S, Cornil D, Cornil J. Challenges for Incorporating Optical Switchability in Organic-Based Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27737-27748. [PMID: 34105343 DOI: 10.1021/acsami.1c05489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transistors operate by controlling the current flowing from a source to a drain electrode via a third electrode (gate), thus giving access to a binary treatment (ON/OFF or 0/1) of the signal currently exploited in microelectronics. Introducing a second independent lever to modulate the current would allow for more complex logic functions amenable to a single electronic component and hence to new opportunities for advanced electrical signal processing. One avenue is to add this second dimension with light by incorporating photochromic molecules in current organic-based electronic devices. In this Spotlight, we describe different concepts that have been implemented in organic thin films and in molecular junctions as well as some pitfalls that have been highlighted thanks to theoretical modeling.
Collapse
Affiliation(s)
- Valentin Diez Cabanes
- Laboratoire de Physique et Chimie Théoriques, Université de Lorraine & CNRS, 54000 Nancy, France
| | - Colin Van Dyck
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - David Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
12
|
Ilnytskyi JM, Toshchevikov V, Saphiannikova M. Modeling of the photo-induced stress in azobenzene polymers by combining theory and computer simulations. SOFT MATTER 2019; 15:9894-9908. [PMID: 31774109 DOI: 10.1039/c9sm01853k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been shown recently that the photo-induced deformations in azobenzene-containing polymers of a side-chain architecture can be explained by means of the so-called orientational approach. The explanation is based on the following sequence of steps: (i) reorientation of azobenzenes under illumination, (ii) reorientation of the polymer backbones coupled mechanically to azobenzenes, and (iii) development of large stress in a material. Step (i) is based on the angle selective absorption of the azobenzene chromophore, which is a well established fact. Step (iii) has been validated in a series of recent theoretic studies in an infinite coupling limit. Concerning step (ii), in a real material, the backbone-azobenzene coupling will be always finite, resulting in a decrease of the effective torque sensed by the backbones and in a time delay in their reorientation. To study the relevance of these effects in detail, we perform coarse-grained molecular dynamics simulations of side-chain azobenzene-containing oligomers in bulk at conditions close to the glassy state. The focus is on the dynamical properties of such a system and on its response to the illumination, with the latter modeled either as an orientation potential applied to the azobenzenes or via their stochastic photo-isomerization. By matching the amount of light-induced stress evaluated in both cases, we obtained the equivalent orientation potential as a function of the illumination intensity and the system density.
Collapse
Affiliation(s)
- Jaroslav M Ilnytskyi
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1, Svientsitskii Str., 79011 Lviv, Ukraine.
| | | | | |
Collapse
|
13
|
Savchenko V, Koch M, Pavlov AS, Saphiannikova M, Guskova O. Stacks of Azobenzene Stars: Self-Assembly Scenario and Stabilising Forces Quantified in Computer Modelling. Molecules 2019; 24:E4387. [PMID: 31801297 PMCID: PMC6930662 DOI: 10.3390/molecules24234387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/27/2022] Open
Abstract
In this paper, the columnar supramolecular aggregates of photosensitive star-shaped azobenzenes with benzene-1,3,5-tricarboxamide core and azobenzene arms are analyzed theoretically by applying a combination of computer simulation techniques. Without a light stimulus, the azobenzene arms adopt the trans-state and build one-dimensional columns of stacked molecules during the first stage of the noncovalent association. These columnar aggregates represent the structural elements of more complex experimentally observed morphologies-fibers, spheres, gels, and others. Here, we determine the most favorable mutual orientations of the trans-stars in the stack in terms of (i) the π - π distance between the cores lengthwise the aggregate, (ii) the lateral displacements due to slippage and (iii) the rotation promoting the helical twist and chirality of the aggregate. To this end, we calculate the binding energy diagrams using density functional theory. The model predictions are further compared with available experimental data. The intermolecular forces responsible for the stability of the stacks in crystals are quantified using Hirshfeld surface analysis. Finally, to characterize the self-assembly mechanism of the stars in solution, we calculate the hydrogen bond lengths, the normalized dipole moments and the binding energies as functions of the columnar length. For this, molecular dynamics trajectories are analyzed. Finally, we conclude about the cooperative nature of the self-assembly of star-shaped azobenzenes with benzene-1,3,5-tricarboxamide core in aqueous solution.
Collapse
Affiliation(s)
- Vladyslav Savchenko
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany; (V.S.); (M.S.)
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
| | - Markus Koch
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
| | - Aleksander S. Pavlov
- Department of Physical Chemistry, Faculty of Chemistry and Technology, Tver State University, Sadovyj per. 35, Tver 170002, Russia;
| | - Marina Saphiannikova
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany; (V.S.); (M.S.)
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
| | - Olga Guskova
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, 01062 Dresden, Germany; (V.S.); (M.S.)
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany;
| |
Collapse
|
14
|
Koch M, Saphiannikova M, Guskova O. Do Columns of Azobenzene Stars Disassemble under Light Illumination? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14659-14669. [PMID: 31627699 DOI: 10.1021/acs.langmuir.9b02960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The clustering properties of star-shaped molecules comprising three photochromic azobenzene-containing arms are investigated with specific focus on the influence of light on these structures. Previous experimental works report self-assembly of azobenzene stars in aqueous solution into long columnar clusters that are detectable using optical microscopy. These clusters appear to vanish under UV irradiation, which is known to induce trans-to-cis photoisomerization of the azobenzene groups. We have performed MD simulations, density functional theory, and density functional tight binding calculations to determine conformational properties and binding energies of these clusters. Our simulation data suggest that the binding strength of the clusters is large enough to prevent a breaking along their main axis. We conclude that very likely other mechanisms lead to the apparent disappearance of the clusters.
Collapse
Affiliation(s)
- Markus Koch
- Institute Theory of Polymers , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
| | - Marina Saphiannikova
- Institute Theory of Polymers , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
- Dresden Center for Computational Materials Science (DCMS) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Olga Guskova
- Institute Theory of Polymers , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
- Dresden Center for Computational Materials Science (DCMS) , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
15
|
Urner LH, Schade B, Schulze M, Folmert K, Haag R, Pagel K. Switchable Solubility of Azobenzene-Based Bolaamphiphiles. Chemphyschem 2019; 20:1690-1697. [PMID: 31074563 DOI: 10.1002/cphc.201900334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Indexed: 11/05/2022]
Abstract
The ability to design amphiphiles with predictable solubility properties is of everlasting interest in supramolecular chemistry. Relevant structural parameters include the hydrophobic-hydrophilic balance and structural flexibility. In this work, we investigate the water solubility of azobenzene-based triglycerol bolaamphiphiles (TGBAs). In particular, we analyzed the structural effects of backbone hydrophobicity, flexibility, and cis/trans isomerization on the water solubility of a subset of five TGBAs. This leads to the first example of a non-ionic bolaamphiphile whose water solubility can be changed by irradiation with light. The underlying kinetics were monitored using liquid chromatography and a closer analysis of the underlying aggregation processes provides a mechanistic understanding of the light-driven dissolution process. We anticipate that the results obtained will help to engineer bolaamphiphiles with predictable solution properties in the future.
Collapse
Affiliation(s)
- Leonhard H Urner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Boris Schade
- Freie Universität Berlin Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy, 14195, Berlin, Germany
| | - Maiko Schulze
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Kristin Folmert
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany
| | - Kevin Pagel
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 3, 14195, Berlin, Germany.,Fritz Haber Institute of the Max Planck Society, Department of Molecular Physics, Faradayweg 4-6, Berlin, Germany
| |
Collapse
|
16
|
Galanti A, Santoro J, Mannancherry R, Duez Q, Diez-Cabanes V, Valášek M, De Winter J, Cornil J, Gerbaux P, Mayor M, Samorì P. A New Class of Rigid Multi(azobenzene) Switches Featuring Electronic Decoupling: Unravelling the Isomerization in Individual Photochromes. J Am Chem Soc 2019; 141:9273-9283. [DOI: 10.1021/jacs.9b02544] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Agostino Galanti
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jasmin Santoro
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Rajesh Mannancherry
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
| | - Quentin Duez
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Valentin Diez-Cabanes
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Michal Valášek
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Marcel Mayor
- Karlsruhe Institute of Technology KIT, Institute of Nanotechnology, P.O. Box
3640, 76021 Karlsruhe, Germany
- Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
- Lehn Institute of Functional Materials (LFM), School of Chemistry, Sun Yat-Sen University (SYSU), Guangzhou 510275, China
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
17
|
Guskova O, Savchenko V, König U, Uhlmann P, Sommer JU. How do immobilised cell-adhesive Arg–Gly–Asp-containing peptides behave at the PAA brush surface? MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1502429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Olga Guskova
- Leibniz Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Vladyslav Savchenko
- Fakultät Umweltwissenschaften, Technische Universität Dresden, Dresden, Germany
| | - Ulla König
- Leibniz Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Petra Uhlmann
- Leibniz Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jens-Uwe Sommer
- Leibniz Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
18
|
Loebner S, Lomadze N, Kopyshev A, Koch M, Guskova O, Saphiannikova M, Santer S. Light-Induced Deformation of Azobenzene-Containing Colloidal Spheres: Calculation and Measurement of Opto-Mechanical Stresses. J Phys Chem B 2018; 122:2001-2009. [PMID: 29337554 DOI: 10.1021/acs.jpcb.7b11644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report on light-induced deformation of colloidal spheres consisting of azobenzene-containing polymers. The colloids of the size between 60 nm and 2 μm in diameter were drop casted on a glass surface and irradiated with linearly polarized light. It was found that colloidal particles can be deformed up to ca. 6 times of their initial diameter. The maximum degree of deformation depends on the irradiation wavelength and intensity, as well as on colloidal particles size. On the basis of recently proposed theory by Toshchevikov et al. [ J. Phys. Chem. Lett. 2017 , 8 , 1094 ], we calculated the opto-mechanical stresses (ca. 100 MPa) needed for such giant deformations and compared them with the experimental results.
Collapse
Affiliation(s)
- Sarah Loebner
- Institute of Physics and Astronomy, University of Potsdam , 14476 Potsdam, Germany
| | - Nino Lomadze
- Institute of Physics and Astronomy, University of Potsdam , 14476 Potsdam, Germany
| | - Alexey Kopyshev
- Institute of Physics and Astronomy, University of Potsdam , 14476 Potsdam, Germany
| | - Markus Koch
- Leibniz Institute of Polymer Research Dresden , 01069 Dresden, Germany
| | - Olga Guskova
- Leibniz Institute of Polymer Research Dresden , 01069 Dresden, Germany
| | | | - Svetlana Santer
- Institute of Physics and Astronomy, University of Potsdam , 14476 Potsdam, Germany
| |
Collapse
|
19
|
Montagna M, Guskova O. Photosensitive Cationic Azobenzene Surfactants: Thermodynamics of Hydration and the Complex Formation with Poly(methacrylic acid). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:311-321. [PMID: 29228776 DOI: 10.1021/acs.langmuir.7b03638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this computational work, we investigate the photosensitive cationic surfactants with the trimethylammonium or polyamine hydrophilic head and the azobenzene-containing hydrophobic tail. The azobenzene-based molecules are known to undergo a reversible trans-cis-trans isomerization reaction when subjected to UV-visible light irradiation. Combining the density functional theory and the all-atom molecular dynamics simulations, the structural and the hydration properties of the trans- and the cis-isomers and their interaction with the oppositely charged poly(methacrylic acid) in aqueous solution are investigated. We establish and quantify the correlations of the molecular structure and the isomerization state of the surfactants and their hydrophilicity/hydrophobicity and the self-assembling altered by light. For this reason, we compare the hydration free energies of the trans- and the cis-isomers. Moreover, the investigations of the interaction strength between the azobenzene molecules and the polyanion provide additional elucidations of the recent experimental and theoretical studies on the light triggered reversible deformation behavior of the microgels and the polymer brushes loaded with azobenzene surfactants.
Collapse
Affiliation(s)
- Maria Montagna
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, D-01069 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, D-01069 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden , D-01062 Dresden, Germany
| |
Collapse
|