1
|
Kaya SG, Hovan A, Fraaije MW. Engineering of LOV-domains for their use as protein tags. Arch Biochem Biophys 2025; 763:110228. [PMID: 39592071 DOI: 10.1016/j.abb.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Light-Oxygen-Voltage (LOV) domains are the protein-based light switches used in nature to trigger and regulate various processes. They allow light signals to be converted into metabolic signaling cascades. Various LOV-domain proteins have been characterized in the last few decades and have been used to develop light-sensitive tools in cell biology research. LOV-based applications exploit the light-driven regulation of effector elements to activate signaling pathways, activate genes, or locate proteins within cells. A relatively new application of an engineered small LOV-domain protein called miniSOG (mini singlet oxygen generator) is based on the light-induced formation of reactive oxygen species (ROS). The first miniSOG was engineered from a LOV domain from Arabidopsis thaliana. This engineered 14 kDa light-responsive flavin-containing protein can be exploited as protein tag for the light-triggered localized production of ROS. Such tunable ROS production by miniSOG or similarly redesigned LOV-domains can be of use in studies focused on subcellular phenomena but may also allow new light-fueled catalytic processes. This review provides an overview of the discovery of LOV domains and their development into tools for cell biology. It also highlights recent advancements in engineering LOV domains for various biotechnological applications and cell biology studies.
Collapse
Affiliation(s)
- Saniye G Kaya
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands
| | - Andrej Hovan
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic; Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovakia
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands.
| |
Collapse
|
2
|
Hovan A, Gala M, Sedláková D, Bánó G, Lee OS, Žoldák G, Sedlák E. On the production of singlet oxygen by the isoalloxazine ring in free and protein-bound flavin cofactors. Biophys Chem 2025; 316:107333. [PMID: 39413722 DOI: 10.1016/j.bpc.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Flavin cofactors, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), as a part of flavoenzymes play a critical role in the catalysis of multiple reactions predominantly of a redox nature. Question arises why nature developed two very similar cofactors with an identical functional part - isoalloxazine ring. We believe that an answer is related to the fact that the isoalloxazine ring belongs to endogenous photosensitizers able to produce reactive and potentially harmful singlet oxygen, 1O2, with high efficiency, ΦΔ,FMN ∼ 0.6. In fact, in contrast with one main conformation of FMN in water, the presence of the adenosine mononucleotide in FAD induces a dynamic equilibrium of two main conformations - closed (∼80 %) and open (∼20 %). The presence of predominant closed conformation of FAD in water has a significant impact on the ΦΔ,FAD value, which is nearly 10-fold lower, ΦΔ,FAD ∼ 0.07, than that of FMN. On the other hand, based on our analysis of a non-homologous dataset of FAD containing 105 proteins, ∼75 % enzyme-bound FAD exists predominantly in open conformations but the ΦΔ values are significantly decreased, ΦΔ < 0.03. We addressed these contradictory observations by analysis of: (i) dependence of ΦΔ,FAD value on opening the FAD conformation by urea and (ii) amino acid propensities for isoalloxazine binding site. We demonstrated that urea-induced destabilization, in 7 M vs 0 M urea, of the closed FAD conformation leads to a ∼ 3-fold increase of ΦΔ, proving the causative relation between ΦΔ value and the flavin cofactor conformation. Detailed examination of the flavoproteins dataset clearly indicated positive propensities of three amino acids: glycine, cysteine, and tryptophan for isoalloxazine ring binding site. We hypothesize that both the closed conformation of free FAD and the arrangement of the isoalloxazine binding site is important for prevention of potentially harmful 1O2 production in cells.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Michal Gala
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia; Department of Biochemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia.
| |
Collapse
|
3
|
Jones BJ, Greene BL. Singlet oxygen-mediated photochemical cross-linking of an engineered fluorescent flavoprotein iLOV. J Biol Chem 2024; 300:107845. [PMID: 39357827 PMCID: PMC11541845 DOI: 10.1016/j.jbc.2024.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Genetically encoded photoactive proteins are integral tools in modern biochemical and molecular biological research. Within this tool box, truncated variants of the phototropin two light-oxygen-voltage flavoprotein have been developed to photochemically generate singlet oxygen (1O2) in vitro and in vivo, yet the effect of 1O2 on these genetically encoded photosensitizers remains underexplored. In this study, we demonstrate that the "improved" light-oxygen-voltage flavoprotein is capable of photochemical 1O2 generation. Once generated, 1O2 induces protein oligomerization via covalent cross-linking. The molecular targets of protein oligomerization by cross-linking are not endogenous tryptophans or tyrosines, but rather primarily histidines. Substitution of surface-exposed histidines for serine or glycine residues effectively eliminates protein cross-linking. When used in biochemical applications, such protein-protein cross-links may interfere with native biological responses to 1O2, which can be ameliorated by substitution of the surface exposed histidines of improved" light-oxygen-voltage or other 1O2-generating flavoproteins.
Collapse
Affiliation(s)
- Benjamin J Jones
- Department of Chemistry and Biochemistry the University of California Santa Barbara, Santa Barbara, California, USA
| | - Brandon L Greene
- Department of Chemistry and Biochemistry the University of California Santa Barbara, Santa Barbara, California, USA; Biomolecular Science and Engineering Program, The University of California Santa Barbara, Santa Barbara, California, USA.
| |
Collapse
|
4
|
Lesniewicz A, Lewandowska-Andralojc A. Probing mechanism of Rhodamine B decolorization under homogeneous conditions via pH-controlled photocatalysis with anionic porphyrin. Sci Rep 2024; 14:22600. [PMID: 39349639 PMCID: PMC11442955 DOI: 10.1038/s41598-024-73586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Porphyrins are acknowledged for their efficacy as photosensitizers and show potential for the treatment of water contaminated with diverse dyes. This research emphasizes the use of meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) as a photosensitizer for purifying water contaminated with rhodamine B. Investigations were conducted under homogeneous conditions using visible light irradiation, revealing the efficacy of the porphyrin in the decolorization of rhodamine B strongly depends on pH of the solution. This study demonstrated that within 120 min, the decolorization process rapidly removed about 95% of RhB at an initial pH of 3.0, while at pH 6.0, the removal rate was significantly lower, at only 12%. An extensive photophysical study of the TPPS was carried out at pH 6.0 and pH 3.0 including absorption and fluorescence spectra, fluorescence quantum yields, triplet absorption spectra, triplet lifetimes, triplet and singlet oxygen quantum yields in order to explain difference in the efficiency of RhB discoloration. A thorough investigation into mechanism revealed that neither reactive oxygen species nor singlet oxygen played a role in RhB decolorization within this system. Instead, the predominant route was found to be the electron transfer from photoexcited TPPS to RhB, followed by proton transfer at pH 3.0, leading to the generation of a colorless leuco form.
Collapse
Affiliation(s)
- Aleksandra Lesniewicz
- Faculty of Chemistry , Adam Mickiewicz University , Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Anna Lewandowska-Andralojc
- Faculty of Chemistry , Adam Mickiewicz University , Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.
- Center for Advanced Technologies , Adam Mickiewicz University , Uniwersytetu Poznanskiego 10, Poznan, 61-614, Poland.
| |
Collapse
|
5
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
6
|
Hovan A, Sedláková D, Lee OS, Bánó G, Sedlák E. pH modulates efficiency of singlet oxygen production by flavin cofactors. RSC Adv 2024; 14:28783-28790. [PMID: 39263436 PMCID: PMC11388723 DOI: 10.1039/d4ra05540c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are frequently used interchangeably in the catalysis of various reactions as part of flavoenzymes because they have the same functional component, the isoalloxazine ring. However, they differ significantly in their conformational properties. The inclusion of two planar rings in the structure of FAD greatly increases the range of possible conformations compared to FMN. An exemplary instance of this is the remarkable disparity in singlet oxygen efficiency production, Φ Δ, between FMN and FAD. Under neutral pH conditions, FAD has low photosensitizing activity with Φ Δ ∼ 0.07 while FMN demonstrates high photosensitizing activity with Φ Δ ∼ 0.6. Both adenine rings and isoalloxazine in FAD contain pH titratable groups. Through comprehensive analysis of the kinetics of the transient absorbance of the triplet state and the phosphorescence of singlet oxygen from FAD and FMN, we determined the correlation between different conformational states and the pH-dependent generation of singlet oxygen. Based on our findings, we may deduce that within the pH range of pH 2 to pH 13, only two out of the five potential structural states of FAD are capable of efficiently producing singlet oxygen. There are two open conformations: (i) an acidic FAD conformation with a protonated adenine ring, which is around 10 times more populated than the neutral open FAD conformation, and (ii) a neutral pH FAD conformation, which is significantly less populated. The FAD conformer with a protonated adenine ring at acidic pH generates singlet oxygen with approximately 50% efficiency compared to the constantly open FMN at neutral pH. This may have implications for singlet oxygen synthesis in acidic environments.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences Watsonova 47 040 01 Košice Slovakia
| | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice Moyzesova 11 041 54 Košice Slovakia
| |
Collapse
|
7
|
Lone MS, Merino-Chavez OD, Ricks NJ, Hammond MC, Noriega R. Electron Transfer Drives the Photosensitized Polymerization of Contrast Agents by Flavoprotein Tags for Correlative Microscopy. J Am Chem Soc 2024; 146:23797-23805. [PMID: 39150381 DOI: 10.1021/jacs.4c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Singlet oxygen generation has long been considered the key feature that allows genetically encoded fluorescent tags to produce polymeric contrast agents for electron microscopy. Optimization of the singlet oxygen sensitization quantum yield has not included the effects of electron-rich monomers on the sensitizer's photocycle. We report that at monomer concentrations employed for staining, quenching by electron transfer is the primary deactivation pathway for photoexcitations. A simple photochemical model including contributions from both processes reproduces the observed reaction rates and indicates that most of the product is driven by pathways that involve electron transfer with monomers─not by the sensitization of singlet oxygen. Realizing the importance of these competing reaction pathways offers a new paradigm to guide the development of genetically encodable tags and suggests opportunities to expand the materials scope and growth conditions for polymeric contrast agents (e.g., biocompatible monomers, O2 poor environments).
Collapse
Affiliation(s)
- Mohd Sajid Lone
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Olga D Merino-Chavez
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nathan J Ricks
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ming C Hammond
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Felčíková K, Hovan A, Polák M, Loginov DS, Holotová V, Díaz C, Kožár T, Lee O, Varhač R, Novák P, Bánó G, Sedlák E. Design of AsLOV2 domain as a carrier of light-induced dissociable FMN photosensitizer. Protein Sci 2024; 33:e4921. [PMID: 38501448 PMCID: PMC10949324 DOI: 10.1002/pro.4921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 03/20/2024]
Abstract
Flavin mononucleotide (FMN) is a highly efficient photosensitizer (PS) yielding singlet oxygen (1 O2 ). However, its 1 O2 production efficiency significantly decreases upon isoalloxazine ring encapsulation into the protein matrix in genetically encoded photosensitizers (GEPS). Reducing isoalloxazine ring interactions with surrounding amino acids by protein engineering may increase 1 O2 production efficiency GEPS, but at the same time weakened native FMN-protein interactions may cause undesirable FMN dissociation. Here, in contrast, we intentionally induce the FMN release by light-triggered sulfur oxidation of strategically placed cysteines (oxidation-prone amino acids) in the isoalloxazine-binding site due to significantly increased volume of the cysteinyl side residue(s). As a proof of concept, in three variants of the LOV2 domain of Avena sativa (AsLOV2), namely V416C, T418C, and V416C/T418C, the effective 1 O2 production strongly correlated with the efficiency of irradiation-induced FMN dissociation (wild type (WT) < V416C < T418C < V416C/T418C). This alternative approach enables us: (i) to overcome the low 1 O2 production efficiency of flavin-based GEPSs without affecting native isoalloxazine ring-protein interactions and (ii) to utilize AsLOV2, due to its inherent binding propensity to FMN, as a PS vehicle, which is released at a target by light irradiation.
Collapse
Affiliation(s)
- Kristína Felčíková
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Andrej Hovan
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Marek Polák
- Institute of Microbiology ‐ BioCeV, Academy of Sciences of the Czech RepublicPragueCzech Republic
- Department of Biochemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Dmitry S. Loginov
- Institute of Microbiology ‐ BioCeV, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Veronika Holotová
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - Carlos Díaz
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - One‐Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - Rastislav Varhač
- Department of Biochemistry, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Petr Novák
- Institute of Microbiology ‐ BioCeV, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Gregor Bánó
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
- Department of Biochemistry, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| |
Collapse
|
9
|
Reshetnyak YK, Andreev OA, Engelman DM. Aiming the magic bullet: targeted delivery of imaging and therapeutic agents to solid tumors by pHLIP peptides. Front Pharmacol 2024; 15:1355893. [PMID: 38545547 PMCID: PMC10965573 DOI: 10.3389/fphar.2024.1355893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/05/2024] [Indexed: 11/11/2024] Open
Abstract
The family of pH (Low) Insertion Peptides (pHLIP) comprises a tumor-agnostic technology that uses the low pH (or high acidity) at the surfaces of cells within the tumor microenvironment (TME) as a targeted biomarker. pHLIPs can be used for extracellular and intracellular delivery of a variety of imaging and therapeutic payloads. Unlike therapeutic delivery targeted to specific receptors on the surfaces of particular cells, pHLIP targets cancer, stromal and some immune cells all at once. Since the TME exhibits complex cellular crosstalk interactions, simultaneous targeting and delivery to different cell types leads to a significant synergistic effect for many agents. pHLIPs can also be positioned on the surfaces of various nanoparticles (NPs) for the targeted intracellular delivery of encapsulated payloads. The pHLIP technology is currently advancing in pre-clinical and clinical applications for tumor imaging and treatment.
Collapse
Affiliation(s)
- Yana K. Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Oleg A. Andreev
- Physics Department, University of Rhode Island, Kingston, RI, United States
| | - Donald M. Engelman
- Molecular Biophysics and Biochemistry Department, Yale, New Haven, CT, United States
| |
Collapse
|
10
|
Lancel M, Lindgren M, Monnereau C, Amara Z. Kinetic effects in singlet oxygen mediated oxidations by immobilized photosensitizers on silica. Photochem Photobiol Sci 2024; 23:79-92. [PMID: 38066378 DOI: 10.1007/s43630-023-00502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 02/02/2024]
Abstract
Singlet oxygen (1O2) mediated photo-oxidations are important reactions involved in numerous processes in chemical and biological sciences. While most of the current research works have aimed at improving the efficiencies of these transformations either by increasing 1O2 quantum yields or by enhancing its lifetime, we establish herein that immobilization of a molecular photosensitizer onto silica surfaces affords significant, substrate dependant, enhancement in the reactivity of 1O2. Probing a classical model reaction (oxidation of Anthracene-9, 10-dipropionic acid, ADPA or dimethylanthracene, DMA) with various spectrofluorimetric techniques, it is here proposed that an interaction between polar substrates and the silica surface is responsible for the observed phenomenon. This discovery could have a direct impact on the design of future photosensitized 1O2 processes in various applications ranging from organic photochemistry to photobiology.
Collapse
Affiliation(s)
- Maxime Lancel
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et metiers, HESAM université, 75003, Paris, France
| | - Mikaël Lindgren
- Faculty of Natural Sciences, Department of Physics, Norwegian University of Science and Technology, Gløshaugen, 7491, Trondheim, Norway
| | - Cyrille Monnereau
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, University of Lyon, 69364, Lyon, France.
| | - Zacharias Amara
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et metiers, HESAM université, 75003, Paris, France.
| |
Collapse
|
11
|
Shramova EI, Filimonova VP, Frolova AY, Pichkur EB, Fedotov VR, Konevega AL, Deyev SM, Proshkina GM. HER2-specific liposomes loaded with proteinaceous BRET pair as a promising tool for targeted self-excited photodynamic therapy. Eur J Pharm Biopharm 2023; 193:208-217. [PMID: 37956784 DOI: 10.1016/j.ejpb.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Photodynamic therapy (PDT) for deep-seated tumors is still challenging due to the limited penetration of visible light through tissues. To resolve this limitation, systems based on bioluminescence resonance energy transfer (BRET), that do not require an external light source are proposed. Herein, for BRET-activated PDT we developed proteinaceous BRET-pair consisting of luciferase NanoLuc, which acts as energy donor upon addition of luciferase specific substrate furimazine, and phototoxic protein SOPP3 as a photosensitizer. We have shown that hybrid protein NanoLuc-SOPP3 is an excellent BRET pair with BRET ratio of 1.12. Targeted delivery of NanoLuc-SOPP3 BRET pair via tumor-specific small liposomes (∼100 nm) to tumors overexpressing the HER2-receptor (human epidermal growth factor receptor 2) was demonstrated in vitro and in vivo. The proposed BRET-activated system has been shown to significantly suppress tumor growth in a model of subcutaneous and, more importantly, deep-seated tumor model. Taking into account the in vivo efficiency of proposed BRET-activated system, we believe that it has great potential for depth-independent PDT and can significantly broaden the application of PDT in the clinic.
Collapse
Affiliation(s)
- Elena I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Victoriya P Filimonova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Anastasiya Yu Frolova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Eugene B Pichkur
- Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Vlad R Fedotov
- Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Andrey L Konevega
- Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia; "Biomarker" Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Russia; Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Galina M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Academy of science, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia.
| |
Collapse
|
12
|
Frolova AY, Pakhomov AA, Kakuev DL, Sungurova AS, Dremina AA, Mamontova ED, Deyev SM, Martynov VI. Hybrid protein-peptide system for the selective pH-dependent binding and photodynamic ablation of cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 249:112803. [PMID: 37924677 DOI: 10.1016/j.jphotobiol.2023.112803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Creating new tools for the early diagnosis and treatment of cancer is one of the most important and intensively developing areas of modern medicine. Currently, photodynamic cancer therapy (PDT) is attracting increasing attention as a unique modality of minimally invasive treatment and due to the absence of acquired resistance. However, PDT is associated with undesirable activities, such as non-specific photodynamic effects of sunlight on healthy tissues. Therefore, an important fundamental task is the development of improved PDT agents that selectively act on the affected areas. Here, we report the development of a hybrid protein-peptide system for the selective pH-dependent binding and subsequent photodynamic cancer cells ablation. It is known that a distinctive feature of cancer cells is a decreased pH level in the extracellular space. In this study we exploited a peptide fragment (pHLIP) as a targeting module, which spontaneously binds and embeds into the cell membrane when pH decreases below neutral. A mutant of miniSOG protein fused to pHLIP was used as a photosensitizing constituent. We demonstrate that this protein-peptide photosensitizing system selectively binds to HeLa cells at pH below 6.8 and kills them when exposed to light. These findings demonstrate the feasibility of using genetically encoded MiniSOG fusions with pHLIP for the targeted delivery of PSs to cancer cells and subsequent highly precise photodynamic therapy.
Collapse
Affiliation(s)
- Anastasiya Yu Frolova
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Alexey A Pakhomov
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation.
| | - Dmitry L Kakuev
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Anna S Sungurova
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Anastasiya A Dremina
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Elizaveta D Mamontova
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Sergey M Deyev
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| | - Vladimir I Martynov
- M.M. Shemyakin-Y.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russian Federation
| |
Collapse
|
13
|
Insińska-Rak M, Sikorski M, Wolnicka-Glubisz A. Riboflavin and Its Derivates as Potential Photosensitizers in the Photodynamic Treatment of Skin Cancers. Cells 2023; 12:2304. [PMID: 37759526 PMCID: PMC10528563 DOI: 10.3390/cells12182304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Riboflavin, a water-soluble vitamin B2, possesses unique biological and physicochemical properties. Its photosensitizing properties make it suitable for various biological applications, such as pathogen inactivation and photodynamic therapy. However, the effectiveness of riboflavin as a photosensitizer is hindered by its degradation upon exposure to light. The review aims to highlight the significance of riboflavin and its derivatives as potential photosensitizers for use in photodynamic therapy. Additionally, a concise overview of photodynamic therapy and utilization of blue light in dermatology is provided, as well as the photochemistry and photobiophysics of riboflavin and its derivatives. Particular emphasis is given to the latest findings on the use of acetylated 3-methyltetraacetyl-riboflavin derivative (3MeTARF) in photodynamic therapy.
Collapse
Affiliation(s)
- Małgorzata Insińska-Rak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.I.-R.); (M.S.)
| | - Marek Sikorski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (M.I.-R.); (M.S.)
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
14
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Zheng F, Yu C, Zhou X, Zou P. Genetically encoded photocatalytic protein labeling enables spatially-resolved profiling of intracellular proteome. Nat Commun 2023; 14:2978. [PMID: 37221179 PMCID: PMC10205723 DOI: 10.1038/s41467-023-38565-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Mapping the subcellular organization of proteins is crucial for understanding their biological functions. Herein, we report a reactive oxygen species induced protein labeling and identification (RinID) method for profiling subcellular proteome in the context of living cells. Our method capitalizes on a genetically encoded photocatalyst, miniSOG, to locally generate singlet oxygen that reacts with proximal proteins. Labeled proteins are conjugated in situ with an exogenously supplied nucleophilic probe, which serves as a functional handle for subsequent affinity enrichment and mass spectrometry-based protein identification. From a panel of nucleophilic compounds, we identify biotin-conjugated aniline and propargyl amine as highly reactive probes. As a demonstration of the spatial specificity and depth of coverage in mammalian cells, we apply RinID in the mitochondrial matrix, capturing 477 mitochondrial proteins with 94% specificity. We further demonstrate the broad applicability of RinID in various subcellular compartments, including the nucleus and the endoplasmic reticulum (ER). The temporal control of RinID enables pulse-chase labeling of ER proteome in HeLa cells, which reveals substantially higher clearance rate for secreted proteins than ER resident proteins.
Collapse
Affiliation(s)
- Fu Zheng
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Chenxin Yu
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xinyue Zhou
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Peng Zou
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, China.
| |
Collapse
|
16
|
Bitzenhofer NL, Hilgers F, Bosio GN, Torra J, Casini G, Beinlich FRM, Knieps-Grünhagen E, Gordeliy V, Jaeger KE, Nonell S, Krauss U, Gensch T, Drepper T. Development and Characterization of Flavin-Binding Fluorescent Proteins, Part II: Advanced Characterization. Methods Mol Biol 2023; 2564:143-183. [PMID: 36107341 DOI: 10.1007/978-1-0716-2667-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavin-based fluorescent proteins (FbFPs), a class of small fluorescent proteins derived from light-oxygen-voltage (LOV) domains, bind ubiquitous endogenous flavins as chromophores. Due to their unique properties, they can be used as versatile in vivo reporter proteins under aerobic and anaerobic conditions. This chapter presents methodologies for in-depth characterization of the biochemical, spectroscopic, photophysical, and photochemical properties of FbFPs.
Collapse
Affiliation(s)
- Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Gabriela N Bosio
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Joaquim Torra
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain
| | - Giorgia Casini
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Felix R M Beinlich
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Esther Knieps-Grünhagen
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Valentin Gordeliy
- Institute of Bio-and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
| | - Ulrich Krauss
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Thomas Gensch
- Institute of Biological Information Processing IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
17
|
Li Y, Cui ZJ. Photodynamic Activation of the Cholecystokinin 1 Receptor with Tagged Genetically Encoded Protein Photosensitizers: Optimizing the Tagging Patterns. Photochem Photobiol 2022; 98:1215-1228. [PMID: 35211987 DOI: 10.1111/php.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated photodynamically. For this to happen in situ, genetically encoded protein photosensitizers (GEPP) may be tagged to natively expressed CCK1R, but how to best tag GEPP has not been examined. Therefore, GEPP (miniSOG or KillerRed) was tagged to CCK1R and light-driven photodynamic CCK1R activation was monitored by Fura-2 fluorescent calcium imaging, to screen for optimized tagging patterns. Blue light-emitting diode irradiation of CHO-K1 cells expressing miniSOG fused to N- or C-terminus of CCK1R was found to both trigger persistent calcium oscillations-a hallmark of permanent photodynamic CCK1R activation. Photodynamic CCK1R activation was accomplished also with miniSOG fused to N-terminus of CCK1R via linker (GlySerGly)4 or 8 , but not linker (GSG)12 or an internal ribosomal entry site insert. KillerRed fused to N- or C-terminus of CCK1R after white light irradiation resulted in similar activation of in-frame CCK1R. Photodynamic CCK1R activation in miniSOG-CCK1R-CHO-K1 cells was blocked by singlet oxygen (1 O2 ) quencher uric acid or Trolox C, corroborating the role of 1 O2 as the reactive intermediate. It is concluded that photodynamic CCK1R activation can be achieved either with direct GEPP fusion to CCK1R or fusion via a short linker, fusion via long linkers might serve as the internal control.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Cell Biology, Beijing Normal University, Beijing, China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing, China
| |
Collapse
|
18
|
Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling. Nat Commun 2022; 13:4906. [PMID: 35987950 PMCID: PMC9392063 DOI: 10.1038/s41467-022-32689-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractEnzymatic-based proximity labeling approaches based on activated esters or phenoxy radicals have been widely used for mapping subcellular proteome and protein interactors in living cells. However, activated esters are poorly reactive which leads to a wide labeling radius and phenoxy radicals generated by peroxide treatment may disturb redox-sensitive pathways. Herein, we report a photoactivation-dependent proximity labeling (PDPL) method designed by genetically attaching photosensitizer protein miniSOG to a protein of interest. Triggered by blue light and tunned by irradiation time, singlet oxygen is generated, thereafter enabling spatiotemporally-resolved aniline probe labeling of histidine residues. We demonstrate its high-fidelity through mapping of organelle-specific proteomes. Side-by-side comparison of PDPL with TurboID reveals more specific and deeper proteomic coverage by PDPL. We further apply PDPL to the disease-related transcriptional coactivator BRD4 and E3 ligase Parkin, and discover previously unknown interactors. Through over-expression screening, two unreported substrates Ssu72 and SNW1 are identified for Parkin, whose degradation processes are mediated by the ubiquitination-proteosome pathway.
Collapse
|
19
|
Abstract
Optogenetic actuators enable highly precise spatiotemporal interrogation of biological processes at levels ranging from the subcellular to cells, circuits and behaving organisms. Although their application in neuroscience has traditionally focused on the control of spiking activity at the somatodendritic level, the scope of optogenetic modulators for direct manipulation of presynaptic functions is growing. Presynaptically localized opsins combined with light stimulation at the terminals allow light-mediated neurotransmitter release, presynaptic inhibition, induction of synaptic plasticity and specific manipulation of individual components of the presynaptic machinery. Here, we describe presynaptic applications of optogenetic tools in the context of the unique cell biology of axonal terminals, discuss their potential shortcomings and outline future directions for this rapidly developing research area.
Collapse
|
20
|
Zerlotti R, Losi A, Polverini E. Oxygen diffusion pathways in mutated forms of a LOV photoreceptor from Methylobacterium radiotolerans: A molecular dynamics study. Biomol Concepts 2022; 13:164-174. [DOI: 10.1515/bmc-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Mr4511 from Methylobacterium radiotolerans is a photoreceptor of the light, oxygen voltage (LOV) family, binding flavin mononucleotide (FMN) as a chromophore. It exhibits the prototypical LOV photocycle, with the reversible formation of an FMN-Cys71 adduct via fast decay of the FMN triplet state. Mr4511 has high potential as a photosensitiser for singlet oxygen (SO) upon mutation of C71. Mr4511-C71S shows a triplet lifetime (τ
T) of several hundreds of microseconds, ensuring efficient energy transfer to dioxygen to form SO. In this work, we have explored the potential diffusion pathways for dioxygen within Mr4511 using molecular dynamics (MD) simulations. The structural model of wild-type (wt) Mr4511 showed a dimeric structure stabilised by a strong leucine zipper at the two C-terminal helical ends. We then introduced in silico the C71S mutation and analysed transient and persistent oxygen channels. MD simulations indicate that the chromophore binding site is highly accessible to dioxygen. Mutations that might favour SO generation were designed based on their position with respect to FMN and the oxygen channels. In particular, the C71S-Y61T and C71S-Y61S variants showed an increased diffusion and persistence of oxygen molecules inside the binding cavity.
Collapse
Affiliation(s)
- Rocco Zerlotti
- NeuroTrans ETN Network c/o Nanion Technologies GmbH, Ganghoferstraße 70/a , 80339 München , Bayern , Germany
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A , 43124 Parma , Italy
| | - Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A , 43124 Parma , Italy
| | - Eugenia Polverini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A , 43124 Parma , Italy
| |
Collapse
|
21
|
Mogensen DJ, Etzerodt M, Ogilby PR. Photoinduced Bleaching in an Efficient Singlet Oxygen Photosensitizing Protein: Identifying a Culprit in the Flavin-Binding LOV-Based Protein SOPP3. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Lafaye C, Aumonier S, Torra J, Signor L, von Stetten D, Noirclerc-Savoye M, Shu X, Ruiz-González R, Gotthard G, Royant A, Nonell S. Riboflavin-binding proteins for singlet oxygen production. Photochem Photobiol Sci 2022; 21:1545-1555. [PMID: 35041199 DOI: 10.1007/s43630-021-00156-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022]
Abstract
miniSOG, developed as the first fully genetically encoded singlet oxygen photosensitiser, has found various applications in cell imaging and functional studies. Yet, miniSOG has suboptimal properties, including a low yield of singlet oxygen generation, which can nevertheless be improved tenfold upon blue light irradiation. In a previous study, we showed that this improvement was due to the photolysis of the miniSOG chromophore, flavin mononucleotide (FMN), into lumichrome, with concomitant removal of the phosphoribityl tail, thereby improving oxygen access to the alloxazine ring. We thus reasoned that a chromophore with a shorter tail would readily improve the photosensitizing properties of miniSOG. In this work, we show that the replacement of FMN by riboflavin (RF), which lacks the bulky phosphate group, significantly improves the singlet oxygen quantum yield (ΦΔ). We then proceeded to mutagenize the residues stabilizing the phosphate group of FMN to alter the chromophore specificity. We identified miniSOG-R57Q as a flavoprotein that selectively binds RF in cellulo, with a modestly improved ΦΔ. Our results show that it is possible to modify the flavin specificity of a given flavoprotein, thus providing a new option to tune its photophysical properties, including those leading to photosensitization. We also determined the structure of miniSOG-Q103L, a mutant with a much increased ΦΔ, which allowed us to postulate the existence of another access channel to FMN for molecular oxygen.
Collapse
Affiliation(s)
- Céline Lafaye
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044, Grenoble Cedex 9, France
| | - Sylvain Aumonier
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043, Grenoble Cedex 9, France
| | - Joaquim Torra
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Luca Signor
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044, Grenoble Cedex 9, France
| | - David von Stetten
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043, Grenoble Cedex 9, France
| | - Marjolaine Noirclerc-Savoye
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044, Grenoble Cedex 9, France
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA, 94158-9001, USA.,Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA, 94158-9001, USA
| | - Rubén Ruiz-González
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Guillaume Gotthard
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043, Grenoble Cedex 9, France
| | - Antoine Royant
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, 38044, Grenoble Cedex 9, France. .,European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043, Grenoble Cedex 9, France.
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
23
|
Yuzhakova DV, Shirmanova MV, Klimenko VV, Lukina MM, Gavrina AI, Komarova AD, Gorbachev DA, Sapogova NV, Lukyanov KA, Kamensky VA. PDT with genetically encoded photosensitizer miniSOG on a tumor spheroid model: A comparative study of continuous-wave and pulsed irradiation. Biochim Biophys Acta Gen Subj 2021; 1865:129978. [PMID: 34487824 DOI: 10.1016/j.bbagen.2021.129978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Therapeutic effects of PDT depend on many factors, including the amount of singlet oxygen, localization of photosensitizer and irradiation protocol. The present study was aimed to compare the cytotoxic mechanisms of PDT under continuous-wave (CW) and pulsed irradiation using a tumor spheroid model and a genetically encoded photosensitizer miniSOG. METHODS 1O2 detection in miniSOG and flavin mononucleotide (FMN) solutions was performed. Photobleaching of miniSOG in solution and in HeLa tumor spheroids was analyzed. Tumor spheroid morphology and growth and the cell death mechanisms after PDT in CW and pulsed modes were assessed. RESULTS We found a more rapid 1O2 generation and a higher photobleaching rate in miniSOG solution upon irradiation in pulsed mode compared to CW mode. Photobleaching of miniSOG in tumor spheroids was also higher after irradiation in the pulsed mode. PDT of spheroids in CW mode resulted in a moderate expansion of the necrotic core of tumor spheroids and a slight inhibition of spheroid growth. The pulsed mode was more effective in induction of cell death, including apoptosis, and suppression of spheroid growth. CONCLUSIONS Comparison of CW and pulsed irradiation modes in PDT with miniSOG showed more pronounced cytotoxic effects of the pulsed mode. Our results suggest that the pulsed irradiation regimen enables enhanced 1O2 production by photosensitizer and stimulates apoptosis. GENERAL SIGNIFICANCE Our results provide more insights into the cellular mechanisms of anti-cancer PDT and open the way to improvement of light irradiation protocols.
Collapse
Affiliation(s)
- Diana V Yuzhakova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
| | - Marina V Shirmanova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Vladimir V Klimenko
- Saint-Petersburg Clinical Scientific and Practical Center of Specialized Types of Medical Care (Oncological), 68A Leningradskaya St., Pesochny Settlement, 197758 St. Petersburg, Russia
| | - Maria M Lukina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Alena I Gavrina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Anastasya D Komarova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Dmitry A Gorbachev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., GSP-7, 117997 Moscow, Russia
| | - Natalya V Sapogova
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Konstantin A Lukyanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 30/1 Bolshoy Boulevard, 121205 Moscow, Russia
| | - Vladislav A Kamensky
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| |
Collapse
|
24
|
Ding Y, Zhao Z, Matysik J, Gärtner W, Losi A. Mapping the role of aromatic amino acids within a blue-light sensing LOV domain. Phys Chem Chem Phys 2021; 23:16767-16775. [PMID: 34319324 DOI: 10.1039/d1cp02217b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photosensing LOV (Light, Oxygen, Voltage) domains detect and respond to UVA/Blue (BL) light by forming a covalent adduct between the flavin chromophore and a nearby cysteine, via the decay of the flavin triplet excited state. LOV domains where the reactive cysteine has been mutated are valuable fluorescent tools for microscopy and as genetically encoded photosensitisers for reactive oxygen species. Besides being convenient tools for applications, LOV domains without the reactive cysteine (naturally occurring or engineered) can still be functionally photoactivated via formation of a neutral flavin radical. Tryptophans and tyrosines are held as the main partners as potential electron donors to the flavin excited states. In this work, we explore the relevance of aromatic amino acids in determining the photophysical features of the LOV protein Mr4511 from Methylobacterium radiotolerans by introducing point mutations into the C71S variant that does not form the covalent adduct. By using an array of spectroscopic techniques we measured the fluorescence quantum yields and lifetimes, the triplet yields and lifetimes, and the efficiency of singlet oxygen (SO) formation for eleven Mr4511 variants. Insertion of Trp residues at distances between 0.6 and 1.5 nm from the flavin chromophore results in strong quenching of the flavin excited triplet state and, at the shorter distances even of the singlet excited state. The mutation F130W (ca. 0.6 nm) completely quenches the singlet excited state, preventing triplet formation: in this case, even if the cysteine is present, the photo-adduct is not formed. Tyrosines are also quenchers for the flavin excited states, although not as efficient as Trp residues, as demonstrated with their substitution with the inert phenylalanine. For one of these variants, C71S/Y116F, we found that the quantum yield of formation for singlet oxygen is 0.44 in aqueous aerobic solution, vs 0.17 for C71S. Based on our study with Mr4511 and on literature data for other LOV domains we suggest that Trp and Tyr residues too close to the flavin chromophore (at distances less than 0.9 nm) reduce the yield of photoproduct formation and that introduction of inert Phe residues in key positions can help in developing efficient, LOV-based photosensitisers.
Collapse
Affiliation(s)
- Yonghong Ding
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | | | | | | | | |
Collapse
|
25
|
Hovan A, Berta M, Sedláková D, Miskovsky P, Bánó G, Sedlák E. Heme is responsible for enhanced singlet oxygen deactivation in cytochrome c. Phys Chem Chem Phys 2021; 23:15557-15563. [PMID: 34259248 DOI: 10.1039/d1cp01517f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The deactivation of singlet oxygen, the lowest electronic excited state of molecular oxygen, by proteins is usually described through the interaction of singlet oxygen with certain amino acids. Changes in accessibility of these amino acids influence the quenching rate and the phosphorescence kinetics of singlet oxygen. In the cellular environment, however, numerous proteins with covalently bound or encapsulated cofactors are present. These cofactors could also influence the deactivation of singlet oxygen, and these have received little attention. To confront this issue, we used cytochrome c (cyt c) and apocytochrome c (apocyt c) to illustrate how the heme prosthetic group influences the rate constant of singlet oxygen deactivation upon acidic pH-induced conformational change of cyt c. Photo-excited flavin mononucleotide (FMN) was used to produce singlet oxygen. Our data show that the heme group has a significant and measurable effect on singlet oxygen quenching when the heme is exposed to solvents and is therefore more accessible to singlet oxygen. The effect of amino acids and heme accessibility on the FMN triplet state deactivation was also investigated.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Martin Berta
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Pavol Miskovsky
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia. and SAFTRA Photonics Ltd., Moldavská cesta 51, 040 11 Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| |
Collapse
|
26
|
Kolesov DV, Sokolinskaya EL, Lukyanov KA, Bogdanov AM. Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part I. Acta Naturae 2021; 13:52-64. [PMID: 34707897 PMCID: PMC8526180 DOI: 10.32607/actanaturae.11414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
In modern life sciences, the issue of a specific, exogenously directed manipulation of a cell's biochemistry is a highly topical one. In the case of electrically excitable cells, the aim of the manipulation is to control the cells' electrical activity, with the result being either excitation with subsequent generation of an action potential or inhibition and suppression of the excitatory currents. The techniques of electrical activity stimulation are of particular significance in tackling the most challenging basic problem: figuring out how the nervous system of higher multicellular organisms functions. At this juncture, when neuroscience is gradually abandoning the reductionist approach in favor of the direct investigation of complex neuronal systems, minimally invasive methods for brain tissue stimulation are becoming the basic element in the toolbox of those involved in the field. In this review, we describe three approaches that are based on the delivery of exogenous, genetically encoded molecules sensitive to external stimuli into the nervous tissue. These approaches include optogenetics (Part I) as well as chemogenetics and thermogenetics (Part II), which are significantly different not only in the nature of the stimuli and structure of the appropriate effector proteins, but also in the details of experimental applications. The latter circumstance is an indication that these are rather complementary than competing techniques.
Collapse
Affiliation(s)
- D. V. Kolesov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - E. L. Sokolinskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - K. A. Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| | - A. M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russia
| |
Collapse
|
27
|
Putlyaeva LV, Lukyanov KA. Studying SARS-CoV-2 with Fluorescence Microscopy. Int J Mol Sci 2021; 22:6558. [PMID: 34207305 PMCID: PMC8234815 DOI: 10.3390/ijms22126558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 coronavirus deeply affected the world community. It gave a strong impetus to the development of not only approaches to diagnostics and therapy, but also fundamental research of the molecular biology of this virus. Fluorescence microscopy is a powerful technology enabling detailed investigation of virus-cell interactions in fixed and live samples with high specificity. While spatial resolution of conventional fluorescence microscopy is not sufficient to resolve all virus-related structures, super-resolution fluorescence microscopy can solve this problem. In this paper, we review the use of fluorescence microscopy to study SARS-CoV-2 and related viruses. The prospects for the application of the recently developed advanced methods of fluorescence labeling and microscopy-which in our opinion can provide important information about the molecular biology of SARS-CoV-2-are discussed.
Collapse
Affiliation(s)
| | - Konstantin A. Lukyanov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia;
| |
Collapse
|
28
|
Mogensen DJ, Westberg M, Breitenbach T, Etzerodt M, Ogilby PR. Stable Transfection of the Singlet Oxygen Photosensitizing Protein SOPP3: Examining Aspects of Intracellular Behavior †. Photochem Photobiol 2021; 97:1417-1430. [PMID: 33934354 DOI: 10.1111/php.13440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
Protein-encased chromophores that photosensitize the production of reactive oxygen species, ROS, have been the center of recent activity in studies of oxidative stress. One potential attribute of such systems is that the local environment surrounding the chromophore, and that determines the chromophore's photophysics, ideally remains constant and independent of the global environment into which the system is placed. Therefore, a protein-encased sensitizer localized in the mitochondria would arguably have the same photophysics as that protein-encased sensitizer at the plasma membrane, for example. One thus obtains a useful tool to study processes modulated by spatially localized ROS. One ROS of interest is singlet oxygen, O2 (a1 Δg ). We recently developed a singlet oxygen photosensitizing protein, SOPP, in which flavin mononucleotide, FMN, is encased in a re-engineered light-oxygen-voltage protein. One goal was to ascertain how a version of this system, SOPP3, which selectively makes O2 (a1 Δg ), in vitro, behaves in a cell. We now demonstrate that SOPP3 undergoes exacerbated irradiation-mediated bleaching when expressed at either the plasma membrane or mitochondria in stable cell lines. We find that the environment around the SOPP3 system affects the bleaching rate, which argues against one of the key suppositions in support of a protein-encased chromophore.
Collapse
Affiliation(s)
| | | | | | - Michael Etzerodt
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Yee EF, Oldemeyer S, Böhm E, Ganguly A, York DM, Kottke T, Crane BR. Peripheral Methionine Residues Impact Flavin Photoreduction and Protonation in an Engineered LOV Domain Light Sensor. Biochemistry 2021; 60:1148-1164. [PMID: 33787242 PMCID: PMC8107827 DOI: 10.1021/acs.biochem.1c00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proton-coupled electron transfer reactions play critical roles in many aspects of sensory phototransduction. In the case of flavoprotein light sensors, reductive quenching of flavin excited states initiates chemical and conformational changes that ultimately transmit light signals to downstream targets. These reactions generally require neighboring aromatic residues and proton-donating side chains for rapid and coordinated electron and proton transfer to flavin. Although photoreduction of flavoproteins can produce either the anionic (ASQ) or neutral semiquinone (NSQ), the factors that favor one over the other are not well understood. Here we employ a biologically active variant of the light-oxygen-voltage (LOV) domain protein VVD devoid of the adduct-forming Cys residue (VVD-III) to probe the mechanism of flavin photoreduction and protonation. A series of isosteric and conservative residue replacements studied by rate measurements, fluorescence quantum yields, FTIR difference spectroscopy, and molecular dynamics simulations indicate that tyrosine residues facilitate charge recombination reactions that limit sustained flavin reduction, whereas methionine residues facilitate radical propagation and quenching and also gate solvent access for flavin protonation. Replacement of a single surface Met residue with Leu favors formation of the ASQ over the NSQ and desensitizes photoreduction to oxidants. In contrast, increasing site hydrophilicity by Gln substitution promotes rapid NSQ formation and weakens the influence of the redox environment. Overall, the photoreactivity of VVD-III can be understood in terms of redundant electron donors, internal hole quenching, and coupled proton transfer reactions that all depend upon protein conformation, dynamics, and solvent penetration.
Collapse
Affiliation(s)
- Estella F. Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Elena Böhm
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Abir Ganguly
- Laboratory for Biomolecular Simulation Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
30
|
Sai DL, Lee J, Nguyen DL, Kim YP. Tailoring photosensitive ROS for advanced photodynamic therapy. Exp Mol Med 2021; 53:495-504. [PMID: 33833374 PMCID: PMC8102594 DOI: 10.1038/s12276-021-00599-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Photodynamic therapy (PDT) has been considered a noninvasive and cost-effective modality for tumor treatment. However, the complexity of tumor microenvironments poses challenges to the implementation of traditional PDT. Here, we review recent advances in PDT to resolve the current problems. Major breakthroughs in PDTs are enabling significant progress in molecular medicine and are interconnected with innovative strategies based on smart bio/nanomaterials or therapeutic insights. We focus on newly developed PDT strategies designed by tailoring photosensitive reactive oxygen species generation, which include the use of proteinaceous photosensitizers, self-illumination, or oxygen-independent approaches. While these updated PDT platforms are expected to enable major advances in cancer treatment, addressing future challenges related to biosafety and target specificity is discussed throughout as a necessary goal to expand the usefulness of PDT.
Collapse
Affiliation(s)
- Duc Loc Sai
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jieun Lee
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Duc Long Nguyen
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
31
|
Dichmann L, Bregnhøj M, Liu H, Westberg M, Poulsen TB, Etzerodt M, Ogilby PR. Photophysics of a protein-bound derivative of malachite green that sensitizes the production of singlet oxygen. Photochem Photobiol Sci 2021; 20:435-449. [DOI: 10.1007/s43630-021-00032-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
|
32
|
Diaz D, Vidal X, Sunna A, Care A. Bioengineering a Light-Responsive Encapsulin Nanoreactor: A Potential Tool for In Vitro Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7977-7986. [PMID: 33586952 DOI: 10.1021/acsami.0c21141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Encapsulins, a prokaryotic class of self-assembling protein nanocompartments, are being re-engineered to serve as "nanoreactors" for the augmentation or creation of key biochemical reactions. However, approaches that allow encapsulin nanoreactors to be functionally activated with spatial and temporal precision are lacking. We report the construction of a light-responsive encapsulin nanoreactor for "on demand" production of reactive oxygen species (ROS). Herein, encapsulins were loaded with the fluorescent flavoprotein mini-singlet oxygen generator (miniSOG), a biological photosensitizer that is activated by blue light to generate ROS, primarily singlet oxygen (1O2). We established that the nanocompartments stably encased miniSOG and in response to blue light were able to mediate the photoconversion of molecular oxygen into ROS. Using an in vitro model of lung cancer, we showed that ROS generated by the nanoreactor triggered photosensitized oxidation reactions which exerted a toxic effect on tumor cells, suggesting utility in photodynamic therapy. This encapsulin nanoreactor thus represents a platform for the light-controlled initiation and/or modulation of ROS-driven processes in biomedicine and biotechnology.
Collapse
Affiliation(s)
- Dennis Diaz
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Xavier Vidal
- Fraunhofer Institut für Angewandte Festkörperphysik (IAF), Tullastrasse 72, 79108 Freiburg, Germany
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew Care
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
33
|
Genetically Encoded Photosensitizer for Destruction of Protein or Cell Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:265-279. [PMID: 33398819 DOI: 10.1007/978-981-15-8763-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are several paths when excited molecules return to the ground state. In the case of fluorescent molecules, the dominant path is fluorescence emission that is greatly contributing to bioimaging. Meanwhile, photosensitizers transfer electron or energy from chromophore to the surrounding molecules, including molecular oxygen. Generated reactive oxygen species has potency to attack other molecules by oxidation. In this chapter, we introduce the chromophore-assisted light inactivation (CALI) method using a photosensitizer to inactivate proteins in a spatiotemporal manner and development of CALI tools, which is useful for investigation of protein functions and dynamics, by inactivation of the target molecules. Moreover, photosensitizers with high efficiency make it possible optogenetic control of cell ablation in living organisms and photodynamic therapy. Further development of photosensitizers with different excitation wavelengths will contribute to the investigation of multiple proteins or cell functions through inactivation in the different positions and timings.
Collapse
|
34
|
Das S, Tiwari M, Mondal D, Sahoo BR, Tiwari DK. Growing tool-kit of photosensitizers for clinical and non-clinical applications. J Mater Chem B 2020; 8:10897-10940. [PMID: 33165483 DOI: 10.1039/d0tb02085k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photosensitizers are photosensitive molecules utilized in clinical and non-clinical applications by taking advantage of light-mediated reactive oxygen generation, which triggers local and systemic cellular toxicity. Photosensitizers are used for diverse biological applications such as spatio-temporal inactivation of a protein in a living system by chromophore-assisted light inactivation, localized cell photoablation, photodynamic and immuno-photodynamic therapy, and correlative light-electron microscopy imaging. Substantial efforts have been made to develop several genetically encoded, chemically synthesized, and nanotechnologically driven photosensitizers for successful implementation in redox biology applications. Genetically encoded photosensitizers (GEPS) or reactive oxygen species (ROS) generating proteins have the advantage of using them in the living system since they can be manipulated by genetic engineering with a variety of target-specific genes for the precise spatio-temporal control of ROS generation. The GEPS variety is limited but is expanding with a variety of newly emerging GEPS proteins. Apart from GEPS, a large variety of chemically- and nanotechnologically-empowered photosensitizers have been developed with a major focus on photodynamic therapy-based cancer treatment alone or in combination with pre-existing treatment methods. Recently, immuno-photodynamic therapy has emerged as an effective cancer treatment method using smartly designed photosensitizers to initiate and engage the patient's immune system so as to empower the photosensitizing effect. In this review, we have discussed various types of photosensitizers, their clinical and non-clinical applications, and implementation toward intelligent efficacy, ROS efficiency, and target specificity in biological systems.
Collapse
Affiliation(s)
- Suman Das
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao Plateau, Goa 403206, India.
| | | | | | | | | |
Collapse
|
35
|
Ding T, Zhu L, Fang Y, Liu Y, Tang W, Zou P. Chromophore‐Assisted Proximity Labeling of DNA Reveals Chromosomal Organization in Living Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Ding
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Liyuan Zhu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuxin Fang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yangluorong Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Wei Tang
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- PKU-IDG/McGovern Institute for Brain Research Beijing 100871 China
- Chinese Institute for Brain Research (CIBR) Beijing 102206 China
| |
Collapse
|
36
|
Consiglieri E, Xu QZ, Zhao KH, Gärtner W, Losi A. The first molecular characterisation of blue- and red-light photoreceptors from Methylobacterium radiotolerans. Phys Chem Chem Phys 2020; 22:12434-12446. [PMID: 32458860 DOI: 10.1039/d0cp02014a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methylobacteria are facultative methylotrophic phytosymbionts of great industrial and agronomical interest, and they are considered as opportunistic pathogens posing a health threat to humans. So far only a few reports mention photoreceptor coding sequences in Methylobacteria genomes, but no investigation at the molecular level has been performed yet. We here present comprehensive in silico research into potential photoreceptors in this bacterial phylum and report the photophysical and photochemical characterisation of two representatives of the most widespread photoreceptor classes, a blue-light sensing LOV (light, oxygen, voltage) protein and a red/far red light sensing BphP (biliverdin-binding bacterial phytochrome) from M. radiotolerans JCM 2831. Overall, both proteins undergo the expected light-triggered reactions, but peculiar features were also identified. The LOV protein Mr4511 has an extremely long photocycle and lacks a tryptophan conserved in ca. 75% of LOV domains. Mutation I37V accelerates the photocycle by one order of magnitude, while the Q112W change underscores the ability of tryptophan in this position to perform efficient energy transfer to the flavin chromophore. Time-resolved photoacoustic experiments showed that Mr4511 has a higher triplet quantum yield than other LOV domains and that the formation of the photoproduct results in a volume expansion, in sharp contrast to other LOV proteins. Mr4511 was found to be astonishingly resistant to denaturation by urea, still showing light-triggered reactions after incubation in urea for more than 20 h. The phytochrome MrBphP1 exhibits the so far most red-shifted absorption maxima for its Pr- and Pfr forms (λmax = 707 nm and 764 nm for the Pr and Pfr forms). The light-driven conversions in both directions occur with relatively high quantum yields of 0.2. Transient ns absorption spectroscopy (μs-ms time range) identifies the decay of the instantaneously formed lumi-intermediate, followed by only one additional intermediate before the formation of the respective final photoproducts for Pr-to-Pfr or Pfr-to-Pr photoconversion, in contrast to other BphPs. The relatively simple photoconversion patterns suggest the absence of the shunt pathways reported for other bacterial phytochromes.
Collapse
Affiliation(s)
- Eleonora Consiglieri
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| | - Qian-Zhao Xu
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany and State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| |
Collapse
|
37
|
Ding T, Zhu L, Fang Y, Liu Y, Tang W, Zou P. Chromophore‐Assisted Proximity Labeling of DNA Reveals Chromosomal Organization in Living Cells. Angew Chem Int Ed Engl 2020; 59:22933-22937. [DOI: 10.1002/anie.202005486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/11/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Tao Ding
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Liyuan Zhu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yuxin Fang
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Yangluorong Liu
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| | - Wei Tang
- Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
| | - Peng Zou
- College of Chemistry and Molecular Engineering Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences Beijing 100871 China
- PKU-IDG/McGovern Institute for Brain Research Beijing 100871 China
- Chinese Institute for Brain Research (CIBR) Beijing 102206 China
| |
Collapse
|
38
|
Li Y, Cui ZJ. Photodynamic Activation of Cholecystokinin 1 Receptor with Different Genetically Encoded Protein Photosensitizers and from Varied Subcellular Sites. Biomolecules 2020; 10:biom10101423. [PMID: 33050050 PMCID: PMC7601527 DOI: 10.3390/biom10101423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated by singlet oxygen (1O2) generated in photodynamic action with sulphonated aluminum phthalocyanine (SALPC) or genetically encoded protein photosensitizer (GEPP) KillerRed or mini singlet oxygen generator (miniSOG). A large number of GEPP with varied 1O2 quantum yields have appeared recently; therefore, in the present work, the efficacy of different GEPP to photodynamically activate CCK1R was examined, as monitored by Fura-2 calcium imaging. KillerRed, miniSOG, miniSOG2, singlet oxygen protein photosensitizer (SOPP), flavin-binding fluorescent protein from Methylobacterium radiotolerans with point mutation C71G (Mr4511C71G), and flavin-binding fluorescent protein from Dinoroseobacter shibae (DsFbFP) were expressed at the plasma membrane (PM) in AR4-2J cells, which express endogenous CCK1R. Light irradiation (KillerRed: white light 85.3 mW‧cm-2, 4' and all others: LED 450 nm, 85 mW·cm-2, 1.5') of GEPPPM-expressing AR4-2J was found to all trigger persistent calcium oscillations, a hallmark of permanent photodynamic CCK1R activation; DsFbFP was the least effective, due to poor expression. miniSOG was targeted to PM, mitochondria (MT) or lysosomes (LS) in AR4-2J in parallel experiments; LED light irradiation was found to all induce persistent calcium oscillations. In miniSOGPM-AR4-2J cells, light emitting diode (LED) light irradiation-induced calcium oscillations were readily inhibited by CCK1R antagonist devazepide 2 nM; miniSOGMT-AR4-2J cells were less susceptible, but miniSOGLS-AR4-2J cells were not inhibited. In conclusion, different GEPPPM could all photodynamically activate CCK1R. Intracellular GEPP photodynamic action may prove particularly suited to study intracellular GPCR.
Collapse
|
39
|
Hernández-Rodríguez EW, Escorcia AM, van der Kamp MW, Montero-Alejo AL, Caballero J. Multi-scale simulation reveals that an amino acid substitution increases photosensitizing reaction inputs in Rhodopsins. J Comput Chem 2020; 41:2278-2295. [PMID: 32757375 DOI: 10.1002/jcc.26392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/27/2020] [Accepted: 07/04/2020] [Indexed: 11/11/2022]
Abstract
Evaluating the availability of molecular oxygen (O2 ) and energy of excited states in the retinal binding site of rhodopsin is a crucial challenging first step to understand photosensitizing reactions in wild-type (WT) and mutant rhodopsins by absorbing visible light. In the present work, energies of the ground and excited states related to 11-cis-retinal and the O2 accessibility to the β-ionone ring are evaluated inside WT and human M207R mutant rhodopsins. Putative O2 pathways within rhodopsins are identified by using molecular dynamics simulations, Voronoi-diagram analysis, and implicit ligand sampling while retinal energetic properties are investigated through density functional theory, and quantum mechanical/molecular mechanical methods. Here, the predictions reveal that an amino acid substitution can lead to enough energy and O2 accessibility in the core hosting retinal of mutant rhodopsins to favor the photosensitized singlet oxygen generation, which can be useful in understanding retinal degeneration mechanisms and in designing blue-lighting-absorbing proteic photosensitizers.
Collapse
Affiliation(s)
- Erix W Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Escuela de Química y Farmacia, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Andrés M Escorcia
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | | | - Ana L Montero-Alejo
- Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente (FCNMM), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Julio Caballero
- Departamento de Bioinformática, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| |
Collapse
|
40
|
Aissa HB, Gautier A. Engineering Glowing Chemogenetic Hybrids for Spying on Cells. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hela Ben Aissa
- École normale supérieure PSL University CNRS, Laboratoire des biomolécules, LBM Sorbonne Université 75005 Paris France
| | - Arnaud Gautier
- École normale supérieure PSL University CNRS, Laboratoire des biomolécules, LBM Sorbonne Université 75005 Paris France
- Institut Universitaire de France Paris France
| |
Collapse
|
41
|
Broch F, Gautier A. Illuminating Cellular Biochemistry: Fluorogenic Chemogenetic Biosensors for Biological Imaging. Chempluschem 2020; 85:1487-1497. [PMID: 32644262 DOI: 10.1002/cplu.202000413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Cellular activity is defined by the precise spatiotemporal regulation of various components, such as ions, small molecules, or proteins. Studying cell physiology consequently requires the optical recording of these processes, notably by using fluorescent biosensors. The recent development of various fluorogenic systems greatly expanded the palette of reporters to be included in these sensors design. Fluorogenic reporters consist of a protein or RNA tag that can complex either an endogenous or a synthetic fluorogenic dye (so-called fluorogen). The intrinsic nature of these tags, along with the high tunability of their cognate chromophore provide interesting features such as far-red to near-infrared emission, oxygen independence, or unprecedented color versatility. These engineered photoreceptors, self-labelling proteins, or noncovalent aptamers and protein tags were rapidly identified as promising reporters to observe biological events. This Minireview focuses on the new perspectives they offer to design unique and innovative biosensors, thus pushing the boundaries of cellular imaging.
Collapse
Affiliation(s)
- Fanny Broch
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École normale supérieure, PSL University, CNRS Laboratoire des biomolécules, LBM, 75005, Paris, France.,Institut Universitaire de France, France
| |
Collapse
|
42
|
Li Y, Cui ZJ. NanoLuc Bioluminescence-Driven Photodynamic Activation of Cholecystokinin 1 Receptor with Genetically-Encoded Protein Photosensitizer MiniSOG. Int J Mol Sci 2020; 21:ijms21113763. [PMID: 32466589 PMCID: PMC7313028 DOI: 10.3390/ijms21113763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
In contrast to reversible activation by agonist, cholecystokinin 1 receptor (CCK1R) is permanently activated by singlet oxygen generated in photodynamic action, with sulphonated aluminium phthalocyanine or genetically encoded mini singlet oxygen generator (miniSOG) as photosensitizer. In these works, a halogen light source was used to power photodynamic action. For possible in vivo application of photodynamic CCK1R physiology, bearing a cumbersome light-delivery device connected to an external light source by experimental animals might interfere with their behavior. Therefore, in the present work, the possibility of bioluminescence-driven miniSOG photodynamic CCK1R activation was examined, as monitored by Fura-2 calcium imaging. In parallel experiments, it was found that, after plasma membrane (PM)-localized expression of miniSOGPM in AR4-2J cells, light irradiation with blue light-emitting diode (LED) (450 nm, 85 mW·cm-2, 1.5 min) induced persistent calcium oscillations that were blocked by CCK1R antagonist devazepide 2 nM. NanoLuc was expressed bicistronically with miniSOGPM via an internal ribosome entry site (IRES) sequence (pminiSOGPM-IRES-NanoLuc). The resultant miniSOGPM-IRES-NanoLuc-AR4-2J cells were found to generate strong bioluminescence upon addition of NanoLuc substrate coelenterazine. Strikingly, coelenterazine 5 microM was found to trigger long-lasting calcium oscillations (a hallmark for permanent CCK1R activation) in perifused miniSOGPM-IRES-NanoLuc-AR4-2J cells. These data indicate that NanoLuc bioluminescence can drive miniSOGPM photodynamic CCK1R activation, laying the foundation for its future in vivo applications.
Collapse
|
43
|
Effects of Proline Substitutions on the Thermostable LOV Domain from Chloroflexus aggregans. CRYSTALS 2020. [DOI: 10.3390/cryst10040256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Light-oxygen-voltage (LOV) domains are ubiquitous photosensory modules found in proteins from bacteria, archaea and eukaryotes. Engineered versions of LOV domains have found widespread use in fluorescence microscopy and optogenetics, with improved versions being continuously developed. Many of the engineering efforts focused on the thermal stabilization of LOV domains. Recently, we described a naturally thermostable LOV domain from Chloroflexus aggregans. Here we show that the discovered protein can be further stabilized using proline substitution. We tested the effects of three mutations, and found that the melting temperature of the A95P mutant is raised by approximately 2 °C, whereas mutations A56P and A58P are neutral. To further evaluate the effects of mutations, we crystallized the variants A56P and A95P, while the variant A58P did not crystallize. The obtained crystal structures do not reveal any alterations in the proteins other than the introduced mutations. Molecular dynamics simulations showed that mutation A58P alters the structure of the respective loop (Aβ-Bβ), but does not change the general structure of the protein. We conclude that proline substitution is a viable strategy for the stabilization of the Chloroflexus aggregans LOV domain. Since the sequences and structures of the LOV domains are overall well-conserved, the effects of the reported mutations may be transferable to other proteins belonging to this family.
Collapse
|
44
|
Photoinduced damage of AsLOV2 domain is accompanied by increased singlet oxygen production due to flavin dissociation. Sci Rep 2020; 10:4119. [PMID: 32139757 PMCID: PMC7058016 DOI: 10.1038/s41598-020-60861-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
Flavin mononucleotide (FMN) belongs to the group of very efficient endogenous photosensitizers producing singlet oxygen, 1O2, but with limited ability to be targeted. On the other hand, in genetically-encoded photosensitizers, which can be targeted by means of various tags, the efficiency of FMN to produce 1O2 is significantly diminished due to its interactions with surrounding amino acid residues. Recently, an increase of 1O2 production yield by FMN buried in a protein matrix was achieved by a decrease of quenching of the cofactor excited states by weakening of the protein-FMN interactions while still forming a complex. Here, we suggest an alternative approach which relies on the blue light irradiation-induced dissociation of FMN to solvent. This dissociation unlocks the full capacity of FMN as 1O2 producer. Our suggestion is based on the study of an irradiation effect on two variants of the LOV2 domain from Avena sativa; wild type, AsLOV2 wt, and the variant with a replaced cysteine residue, AsLOV2 C450A. We detected irradiation-induced conformational changes as well as oxidation of several amino acids in both AsLOV2 variants. Detailed analysis of these observations indicates that irradiation-induced increase in 1O2 production is caused by a release of FMN from the protein. Moreover, an increased FMN dissociation from AsLOV2 wt in comparison with AsLOV2 C450A points to a role of C450 oxidation in repelling the cofactor from the protein.
Collapse
|
45
|
Hally C, Delcanale P, Nonell S, Viappiani C, Abbruzzetti S. Photosensitizing proteins for antibacterial photodynamic inactivation. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Cormac Hally
- Institut Quimic de Sarrià, Universitat Ramon Llull Barcelona Spain
- Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità di Parma Parma Italy
| | - Pietro Delcanale
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| | - Santi Nonell
- Institut Quimic de Sarrià, Universitat Ramon Llull Barcelona Spain
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità di Parma Parma Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e InformaticheUniversità di Parma Parma Italy
| |
Collapse
|
46
|
Petrenčáková M, Varhač R, Kožár T, Nemergut M, Jancura D, Schwer MS, Sedlák E. Conformational properties of LOV2 domain and its C450A variant within broad pH region. Biophys Chem 2020; 259:106337. [PMID: 32126442 DOI: 10.1016/j.bpc.2020.106337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
LOV2 (Light-Oxygen-Voltage) domain from Avena sativa phototropin 1 (AsLOV2) belongs to the superfamily of PAS (Per-Arnt-Sim) domains, members of which function as signaling sensors. AsLOV2 undergoes a conformational change upon blue-light absorption by its FMN cofactor. AsLOV2 wild type (wt) is intensively studied as a photo-switchable element in conjugation with various proteins. On the other hand, its variant AsLOV2 with replaced cysteinyl residue C450, which is critical for the forming a covalent adduct with FMN upon irradiation, forms a precursor for some recently developed genetically encoded photosensitizers. In the presented work, we investigated conformational properties of AsLOV2 wt and its variant C450A by circular dichroism, tryptophan and FMN fluorescence, and differential scanning calorimetry in dependence on pH and temperature. We show that both variants are similarly sensitive towards pH of solvent. On the other hand, the mutation C450A leads to a more stable AsLOV2 variant in comparison with the wild type. Thermal transitions of the AsLOV2 proteins monitored by circular dichroism indicate the presence of significant residual structure in thermally-denatured states of both proteins in the pH range from 4 to 9. Both pH- and thermal- transitions of AsLOV2 are accompanied by FMN leaching to solvent. Higher stability, reversibility of thermal transitions, and efficiency of FMN rebinding in the case of C450A variant suggest that the cofactor release may be modulated by suitable mutations in combination with a suitable physicochemical perturbation. These findings can have implications for a design of genetically encoded photosensitizers.
Collapse
Affiliation(s)
- Martina Petrenčáková
- Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Rastislav Varhač
- Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia
| | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Michal Nemergut
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia; Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| | - Marc-Simon Schwer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Erik Sedlák
- Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia; Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia.
| |
Collapse
|
47
|
Onukwufor JO, Trewin AJ, Baran TM, Almast A, Foster TH, Wojtovich AP. Quantification of reactive oxygen species production by the red fluorescent proteins KillerRed, SuperNova and mCherry. Free Radic Biol Med 2020; 147:1-7. [PMID: 31841676 PMCID: PMC6980788 DOI: 10.1016/j.freeradbiomed.2019.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022]
Abstract
Fluorescent proteins can generate reactive oxygen species (ROS) upon absorption of photons via type I and II photosensitization mechanisms. The red fluorescent proteins KillerRed and SuperNova are phototoxic proteins engineered to generate ROS and are used in a variety of biological applications. However, their relative quantum yields and rates of ROS production are unclear, which has limited the interpretation of their effects when used in biological systems. We cloned and purified KillerRed, SuperNova, and mCherry - a related red fluorescent protein not typically considered a photosensitizer - and measured the superoxide (O2•-) and singlet oxygen (1O2) quantum yields with irradiation at 561 nm. The formation of the O2•--specific product 2-hydroxyethidium (2-OHE+) was quantified via HPLC separation with fluorescence detection. Relative to a reference photosensitizer, Rose Bengal, the O2•- quantum yield (ΦO2•-) of SuperNova was determined to be 1.5 × 10-3, KillerRed was 0.97 × 10-3, and mCherry 1.2 × 10-3. At an excitation fluence of 916.5 J/cm2 and matched absorption at 561 nm, SuperNova, KillerRed and mCherry made 3.81, 2.38 and 1.65 μM O2•-/min, respectively. Using the probe Singlet Oxygen Sensor Green (SOSG), we ascertained the 1O2 quantum yield (Φ1O2) for SuperNova to be 22.0 × 10-3, KillerRed 7.6 × 10-3, and mCherry 5.7 × 10-3. These photosensitization characteristics of SuperNova, KillerRed and mCherry improve our understanding of fluorescent proteins and are pertinent for refining their use as tools to advance our knowledge of redox biology.
Collapse
Affiliation(s)
- John O Onukwufor
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States
| | - Adam J Trewin
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States
| | - Timothy M Baran
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, 14642, United States
| | - Anmol Almast
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States
| | - Thomas H Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester, 14642, United States
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester, NY, 14642, United States.
| |
Collapse
|
48
|
Banerjee S, Mitra D. Structural Basis of Design and Engineering for Advanced Plant Optogenetics. TRENDS IN PLANT SCIENCE 2020; 25:35-65. [PMID: 31699521 DOI: 10.1016/j.tplants.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.
Collapse
Affiliation(s)
- Sudakshina Banerjee
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Devrani Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
49
|
Consiglieri E, Xu Q, Bregnhøj M, Westberg M, Ogilby PR, Losi A. Single mutation in a novel bacterial LOV protein yields a singlet oxygen generator. Photochem Photobiol Sci 2019; 18:2657-2660. [PMID: 31624823 DOI: 10.1039/c9pp00328b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mr4511 from Methylobacterium radiotolerans is a 164 amino acid protein built of a flavin mononucleotide (FMN) binding, blue-light responsive LOV (Light, Oxygen, Voltage) core domain plus flanking regions. In contrast to the majority of LOV domains, Mr4511 lacks a tryptophan residue that was previously identified as a major quencher for the FMN triplet state in photosensitizers for singlet oxygen (SO) engineered from these photoreceptors. Here we show that for Mr4511 it is sufficient to only mutate the reactive cysteine responsible for the photocycle (Cys71) in the native protein to generate an efficient SO photosensitizer: both C71S and C71G variants exhibit SO quantum yields of formation, ΦΔ, around 0.2 in air-saturated solutions. Under oxygen saturated conditions, ΦΔ reaches ∼0.5 in deuterated buffer. The introduction of Trp112 in the canonical position for LOV domains dramatically lowers ΦΔ to values comparable to miniSOG, one of the early FMN binding proteins touted as a SO sensitizer. Besides its SO properties, Mr4511 is also exceedingly robust against denaturation with urea and is more photostable than free FMN.
Collapse
Affiliation(s)
- Eleonora Consiglieri
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| | - Qianzhao Xu
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany and State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Michael Westberg
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| |
Collapse
|
50
|
Genetically Encoded Photosensitizers as Light-Triggered Antimicrobial Agents. Int J Mol Sci 2019; 20:ijms20184608. [PMID: 31533368 PMCID: PMC6769541 DOI: 10.3390/ijms20184608] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/08/2023] Open
Abstract
Diseases caused by multi-drug resistant pathogens have become a global concern. Therefore, new approaches suitable for treating these bacteria are urgently needed. In this study, we analyzed genetically encoded photosensitizers (PS) related to the green fluorescent protein (GFP) or light-oxygen-voltage (LOV) photoreceptors for their exogenous applicability as light-triggered antimicrobial agents. Depending on their specific photophysical properties and photochemistry, these PSs can produce different toxic ROS (reactive oxygen species) such as O2•− and H2O2 via type-I, as well as 1O2 via type-II reaction in response to light. By using cell viability assays and microfluidics, we could demonstrate differences in the intracellular and extracellular phototoxicity of the applied PS. While intracellular expression and exogenous supply of GFP-related PSs resulted in a slow inactivation of E. coli and pathogenic Gram-negative and Gram-positive bacteria, illumination of LOV-based PSs such as the singlet oxygen photosensitizing protein SOPP3 resulted in a fast and homogeneous killing of these microbes. Furthermore, our data indicate that the ROS type and yield as well as the localization of the applied PS protein can strongly influence the antibacterial spectrum and efficacy. These findings open up new opportunities for photodynamic inactivation of pathogenic bacteria.
Collapse
|