1
|
Cao M, Zhang X. DNA Adductomics: A Narrative Review of Its Development, Applications, and Future. Biomolecules 2024; 14:1173. [PMID: 39334939 PMCID: PMC11430648 DOI: 10.3390/biom14091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA adductomics is the global study of all DNA adducts and was first proposed in 2006 by the Matsuda group. Its development has been greatly credited to the advances in mass spectrometric techniques, particularly tandem and multiple-stage mass spectrometry. In fact, liquid chromatography-mass spectrometry (LC-MS)-based methods are virtually the sole technique with practicality for DNA adductomic studies to date. At present, DNA adductomics is primarily used as a tool to search for DNA adducts, known and unknown, providing evidence for exposure to exogenous genotoxins and/or for the molecular mechanisms of their genotoxicity. Some DNA adducts discovered in this way have the potential to predict cancer risks and/or to be associated with adverse health outcomes. DNA adductomics has been successfully used to identify and determine exogenous carcinogens that may contribute to the etiology of certain cancers, including bacterial genotoxins and an N-nitrosamine. Also using the DNA adductomic approach, multiple DNA adducts have been observed to show age dependence and may serve as aging biomarkers. These achievements highlight the capability and power of DNA adductomics in the studies of medicine, biological science, and environmental science. Nonetheless, DNA adductomics is still in its infancy, and great advances are expected in the future.
Collapse
Affiliation(s)
- Mengqiu Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
2
|
Almehmadi LM, Reverdatto SV, Ermolenkov VV, Shekhtman A, Lednev IK. In Situ Stability Test for mRNA Vaccines Based on Deep-UV Resonance Raman Spectroscopy. Anal Chem 2024; 96:1003-1008. [PMID: 38052070 PMCID: PMC10845005 DOI: 10.1021/acs.analchem.3c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Deep-UV resonance Raman spectroscopy has been shown to offer great potential for probing the in situ stability of mRNA vaccines. In this study, a vaccine model was subjected to controlled degradation using RNase A or through aging at room temperature. The degradation of mRNA was confirmed by using a cell transfection test and by gel electrophoresis. Under both settings, DUVRR spectroscopy successfully revealed the mRNA degradation signs of the vaccine model.
Collapse
Affiliation(s)
- Lamyaa M Almehmadi
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, College of Arts and Science, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Sergei V Reverdatto
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, College of Arts and Science, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Vladimir V Ermolenkov
- The RNA Institute, College of Arts and Science, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, College of Arts and Science, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
- The RNA Institute, College of Arts and Science, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
3
|
Preclinical Therapeutic Assessment of a New Chemotherapeutics [Dichloro(4,4’-Bis(2,2,3,3-Tetrafluoropropoxy) Methyl)-2,2’-Bipryridine) Platinum] in an Orthotopic Patient-Derived Xenograft Model of Triple-Negative Breast Cancers. Pharmaceutics 2022; 14:pharmaceutics14040839. [PMID: 35456673 PMCID: PMC9031226 DOI: 10.3390/pharmaceutics14040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cisplatin is one of the most common therapeutics used in treatments of several types of cancers. To enhance cisplatin lipophilicity and reduce resistance and side effects, a polyfluorinated bipyridine-modified cisplatin analogue, dichloro[4,4’-bis(2,2,3,3-tetrafluoropropoxy)methyl)-2,2’-bipryridine] platinum (TFBPC), was synthesized and therapeutic assessments were performed. TFBPC displayed superior effects in inhibiting the proliferation of several cisplatin-resistant human cancer cell lines, including MDA-MB-231 breast cancers, COLO205 colon cancers and SK-OV-3 ovarian cancers. TFBPC bound to DNA and formed DNA crosslinks that resulted in DNA degradation, triggering the cell death program through the PARP/Bax/Bcl-2 apoptosis and LC3-related autophagy pathway. Moreover, TFBPC significantly inhibited tumor growth in both animal models which include a cell line-derived xenograft model (CDX) of cisplatin-resistant MDA-MB-231, and a patient-derived xenograft (PDX) model of triple-negative breast cancers (TNBCs). Furthermore, the biopsy specimen from TFBPC-treated xenografts revealed decreased expressions of P53, Ki-67 and PD-L1 coupled with higher expression of cleaved caspase 3, suggesting TFBPC treatment was effective and resulted in good prognostic indications. No significant pathological changes were observed in hematological and biochemistry tests in blood and histological examinations from the specimen of major organs. Therefore, TFBPC is a potential candidate for treatments of patients suffering from TNBCs as well as other cisplatin-resistant cancers.
Collapse
|
4
|
Wang H, Li J, Qin J, Li J, Chen Y, Song D, Zeng H, Wang S. Confocal Raman microspectral analysis and imaging of the drug response of osteosarcoma to cisplatin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2527-2536. [PMID: 34008598 DOI: 10.1039/d1ay00626f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Confocal Raman microspectral analysis and imaging were used to elucidate the drug response of osteosarcoma (OS) to cisplatin. Raman spectral data were obtained from OS cells that were untreated (UT group) and treated with 20 µM (20T group) and 40 µM (40T group) cisplatin for 24 hours. Statistical analysis of the changes in specific Raman signals was performed using a one-way ANOVA and multiple Tukey's honest significant difference (HSD) post hoc tests. Principal component analysis-linear discriminant analysis (PCA-LDA) was used to highlight the featured cellular drug responses based on the obtained spectral information. For spectral imaging analysis, k-means cluster analysis (KCA) was adopted to clarify the effect of cisplatin dose changes on the subcellular structure and its biochemical composition. The results suggest that the major biochemical changes induced by cisplatin in OS cells undergoing apoptosis are reduced protein and nucleic acid content. Through univariate analysis, the changes in the distribution of nucleic acids in OS cells induced by different doses of cisplatin were obtained. The combination of Raman spectroscopy and multivariate analysis shows that cisplatin mainly acts on the nucleus and causes changes in the secondary structure of proteins. These results indicate that Raman imaging technology has the potential to offer the basis of dose optimization for personalized cancer treatment by helping to understand in vitro cellular drug interactions.
Collapse
Affiliation(s)
- Haifeng Wang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, #1 Xuefu Avenue, Guodu Education and Technology Industrial Zone Chang'an District, Xi'an, Shaanxi 710127, China.
| | - Jing Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Li
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, #1 Xuefu Avenue, Guodu Education and Technology Industrial Zone Chang'an District, Xi'an, Shaanxi 710127, China.
| | - Yishen Chen
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, #1 Xuefu Avenue, Guodu Education and Technology Industrial Zone Chang'an District, Xi'an, Shaanxi 710127, China.
| | - Dongliang Song
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, #1 Xuefu Avenue, Guodu Education and Technology Industrial Zone Chang'an District, Xi'an, Shaanxi 710127, China.
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Center, Vancouver, BC V5Z1L3, Canada
| | - Shuang Wang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, #1 Xuefu Avenue, Guodu Education and Technology Industrial Zone Chang'an District, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
5
|
D'Amico F, Zucchiatti P, Latella K, Pachetti M, Gessini A, Masciovecchio C, Vaccari L, Pascolo L. Investigation of genomic DNA methylation by ultraviolet resonant Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000150. [PMID: 32729213 DOI: 10.1002/jbio.202000150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Cytosine plays a preeminent role in DNA methylation, an epigenetic mechanism that regulates gene expression, the misregulation of which can lead to severe diseases. Several methods are nowadays employed for assessing the global DNA methylation levels, but none of them combines simplicity, high sensitivity, and low operating costs to be translated into clinical applications. Ultraviolet (UV) resonant Raman measurements at excitation wavelengths of 272 nm, 260 nm, 250 nm, and 228 nm have been carried out on isolated deoxynucleoside triphosphates (dNTPs), on a dNTP mixture as well as on genomic DNA (gDNA) samples, commercial from salmon sperm and non-commercial from B16 murine melanoma cell line. The 228 nm excitation wavelength was identified as the most suitable energy for enhancing cytosine signals over the other DNA bases. The UV Raman measurements performed at this excitation wavelength on hyper-methylated and hypo-methylated DNA from Jurkat leukemic T-cell line have revealed significant spectral differences with respect to gDNA isolated from salmon sperm and mouse melanoma B16 cells. This demonstrates how the proper choice of the excitation wavelength, combined with optimized extraction protocols, makes UV Raman spectroscopy a suitable technique for highlighting the chemical modifications undergone by cytosine nucleotides in gDNA upon hyper- and hypo-methylation events.
Collapse
Affiliation(s)
| | - Paolo Zucchiatti
- Elettra-Sincrotrone Trieste, Trieste, Italy
- Department of Physics, University of Trieste, Trieste, Italy
- Plasmon Nanotechnologies line, IIT, Genoa, Italy
| | - Katia Latella
- Elettra-Sincrotrone Trieste, Trieste, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Genoa, Italy
| | - Maria Pachetti
- Elettra-Sincrotrone Trieste, Trieste, Italy
- Department of Physics, University of Trieste, Trieste, Italy
| | | | | | | | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
6
|
Geng J, Aioub M, El-Sayed MA, Barry BA. UV Resonance Raman Study of Apoptosis, Platinum-Based Drugs, and Human Cell Lines. Chemphyschem 2018; 19:1428-1431. [DOI: 10.1002/cphc.201800252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jiafeng Geng
- School of Chemistry and Biochemistry and the Parker H. Petit Institute of Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta, Georgia USA
| | - Mena Aioub
- School of Chemistry and Biochemistry, the Parker H. Petit Institute of Bioengineering and Bioscience, and the Laser Dynamics Laboratory; Georgia Institute of Technology; Atlanta, Georgia USA
| | - Mostafa A. El-Sayed
- School of Chemistry and Biochemistry, the Parker H. Petit Institute of Bioengineering and Bioscience, and the Laser Dynamics Laboratory; Georgia Institute of Technology; Atlanta, Georgia USA
| | - Bridgette A. Barry
- School of Chemistry and Biochemistry and the Parker H. Petit Institute of Bioengineering and Bioscience; Georgia Institute of Technology; Atlanta, Georgia USA
| |
Collapse
|
7
|
Nature Inspired Plasmonic Structures: Influence of Structural Characteristics on Sensing Capability. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|