2
|
Roque-Borda CA, da Silva PB, Rodrigues MC, Azevedo RB, Di Filippo L, Duarte JL, Chorilli M, Festozo Vicente E, Pavan FR. Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Pharmaceutics 2021; 13:773. [PMID: 34064302 PMCID: PMC8224320 DOI: 10.3390/pharmaceutics13060773] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (P.B.d.S.); (M.C.R.); (R.B.A.)
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (P.B.d.S.); (M.C.R.); (R.B.A.)
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (P.B.d.S.); (M.C.R.); (R.B.A.)
| | - Leonardo Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.D.F.); (J.L.D.); (M.C.)
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.D.F.); (J.L.D.); (M.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.D.F.); (J.L.D.); (M.C.)
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã 17602-496, Brazil;
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| |
Collapse
|
3
|
Sainas S, Giorgis M, Circosta P, Gaidano V, Bonanni D, Pippione AC, Bagnati R, Passoni A, Qiu Y, Cojocaru CF, Canepa B, Bona A, Rolando B, Mishina M, Ramondetti C, Buccinnà B, Piccinini M, Houshmand M, Cignetti A, Giraudo E, Al-Karadaghi S, Boschi D, Saglio G, Lolli ML. Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold: SAR of the Biphenyl Moiety. J Med Chem 2021; 64:5404-5428. [PMID: 33844533 PMCID: PMC8279415 DOI: 10.1021/acs.jmedchem.0c01549] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 02/08/2023]
Abstract
The connection with acute myelogenous leukemia (AML) of dihydroorotate dehydrogenase (hDHODH), a key enzyme in pyrimidine biosynthesis, has attracted significant interest from pharma as a possible AML therapeutic target. We recently discovered compound 1, a potent hDHODH inhibitor (IC50 = 1.2 nM), able to induce myeloid differentiation in AML cell lines (THP1) in the low nM range (EC50 = 32.8 nM) superior to brequinar's phase I/II clinical trial (EC50 = 265 nM). Herein, we investigate the 1 drug-like properties observing good metabolic stability and no toxic profile when administered at doses of 10 and 25 mg/kg every 3 days for 5 weeks (Balb/c mice). Moreover, in order to identify a backup compound, we investigate the SAR of this class of compounds. Inside the series, 17 is characterized by higher potency in inducing myeloid differentiation (EC50 = 17.3 nM), strong proapoptotic properties (EC50 = 20.2 nM), and low cytotoxicity toward non-AML cells (EC30(Jurkat) > 100 μM).
Collapse
Affiliation(s)
- Stefano Sainas
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Paola Circosta
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Valentina Gaidano
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology, AO SS Antonio e Biagio e
Cesare Arrigo, Via Venezia
16, Alessandria 15121, Italy
| | - Davide Bonanni
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Agnese C. Pippione
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Renzo Bagnati
- Department
of Environmental Health Sciences, Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano 20156, Italy
| | - Alice Passoni
- Department
of Environmental Health Sciences, Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano 20156, Italy
| | - Yaqi Qiu
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
- Higher
Education Mega Center, Institutes for Life Sciences, South China University of Technology, Guangzhou 510641, China
| | - Carina Florina Cojocaru
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
| | - Barbara Canepa
- Gem
Forlab srl, Via Ribes,
5, Colleretto Giacosa, Turin 10010, Italy
| | - Alessandro Bona
- Gem
Chimica srl, Via Maestri
del Lavoro, 25, Busca, Cuneo 12022, Italy
| | - Barbara Rolando
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Mariia Mishina
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Cristina Ramondetti
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Barbara Buccinnà
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Marco Piccinini
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Mohammad Houshmand
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Alessandro Cignetti
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo Turati, 62, Turin 10128, Italy
| | - Enrico Giraudo
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
| | - Salam Al-Karadaghi
- Department
of Biochemistry and Structural Biology, Lund University, Naturvetarvägen 14, Box 124, Lund 221 00, Sweden
| | - Donatella Boschi
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Giuseppe Saglio
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo Turati, 62, Turin 10128, Italy
| | - Marco L. Lolli
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| |
Collapse
|
4
|
Costa NCS, Piccoli JP, Santos-Filho NA, Clementino LC, Fusco-Almeida AM, De Annunzio SR, Fontana CR, Verga JBM, Eto SF, Pizauro-Junior JM, Graminha MAS, Cilli EM. Antimicrobial activity of RP-1 peptide conjugate with ferrocene group. PLoS One 2020; 15:e0228740. [PMID: 32214347 PMCID: PMC7098557 DOI: 10.1371/journal.pone.0228740] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
Parasitic diseases are a neglected and serious problem, especially in underdeveloped countries. Among the major parasitic diseases, Leishmaniasis figures as an urgent challenge due to its high incidence and severity. At the same time, the indiscriminate use of antibiotics by the population is increasing together with resistance to medicines. To address this problem, new antibiotic-like molecules that directly kill or inhibit the growth of microorganisms are necessary, where antimicrobial peptides (AMPs) can be of great help. In this work, the ferrocene molecule, one active compound with low levels of in vivo toxicity, was coupled to the N-terminus of the RP1 peptide (derived from the human chemokine CXCL4), aiming to evaluate how this change modifies the structure, biological activity, and toxicity of the peptide. The peptide and the conjugate were synthesized using the solid phase peptide synthesis (SPPS). Circular dichroism assays in PBS showed that the RP1 peptide and its conjugate had a typical spectrum for disordered structures. The Fc-RP1 presented anti-amastigote activity against Leishmania amazonensis (IC50 = 0.25 μmol L–1). In comparison with amphotericin B, a second-line drug approved for leishmaniasis treatment, (IC50 = 0.63 μmol L-1), Fc-RP1 was more active and showed a 2.5-fold higher selectivity index. The RP1 peptide presented a MIC of 4.3 μmol L-1 against S. agalactiae, whilst Fc-RP1 was four times more active (MIC = 0.96 μmol L-1), indicating that ferrocene improved the antimicrobial activity against Gram-positive bacteria. The Fc-RP1 peptide also decreased the minimum inhibitory concentration (MIC) in the assays against E. faecalis (MIC = 7.9 μmol L-1), E. coli (MIC = 3.9 μmol L-1) and S. aureus (MIC = 3.9 μmol L-1). The cytotoxicity of the compounds was tested against HaCaT cells, and no significant activity at the highest concentration tested (500 μg. mL-1) was observed, showing the high potential of this new compound as a possible new drug. The coupling of ferrocene also increased the vesicle permeabilization of the peptide, showing a direct relation between high peptide concentration and high carboxyfluorescein release, which indicates the action mechanism by pore formation on the vesicles. Several studies have shown that ferrocene destabilizes cell membranes through lipid peroxidation, leading to cell lysis. It is noteworthy that the Fc-RP1 peptide synthesized here is a prototype of a bioconjugation strategy, but it still is a compound with great biological activity against neglected and fish diseases.
Collapse
Affiliation(s)
- Natalia C. S. Costa
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Julia P. Piccoli
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Norival A. Santos-Filho
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Leandro C. Clementino
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ana M. Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Sarah R. De Annunzio
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carla R. Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Juliane B. M. Verga
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Silas F. Eto
- Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - João M. Pizauro-Junior
- Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
- * E-mail: (EMC); (MASG)
| | - Eduardo M. Cilli
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
- * E-mail: (EMC); (MASG)
| |
Collapse
|