1
|
Du Y, Zhang L, Yang F, Zhou W, He X. Effects of algal organic matters on microporous ceramic emitters clogging in agricultural water distribution systems: Experiment and molecular simulation investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175709. [PMID: 39179047 DOI: 10.1016/j.scitotenv.2024.175709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The mechanism by which algal organic matter (AOM) affects the clogging of ceramic emitters remains unclear, which partially reduces the operational life of agricultural water distribution systems. This paper systematically investigated the clogging phenomenon of ceramic emitters under three different AOM concentrations. The results of irrigation tests revealed that the AOM significantly affects the degree of clogging of ceramic emitters, with higher AOM concentrations leading to faster flow reduction. By analyzing the original irrigation water and effluent and characterizing the clogged emitter surface, it was demonstrated that AOM was intercepted by the ceramic emitter, forming a dense biofilm. Infrared spectroscopy analysis revealed that polysaccharides and humic substances were the main clogging components. The clogging kinetics showed that as the AOM concentration increased, the clogging of the filter cake layer gradually become dominant. Further, the mechanism of interaction between AOM and silica ceramic emitters was explored from a microscopic perspective using molecular dynamics (MD) simulation with bovine serum albumin (BSA), sodium alginate (SA), and humic acid (HA) as model clogging substances in AOM. The simulation results indicated a strong interaction between AOM molecules and silica molecules dominated by electrostatic attraction, with the strength of the interaction as SA > HA > BSA. It was hypothesized that early clogging was mainly formed by polysaccharides and humic substances combining with silica molecules, while BSA was retained later by combining with organics on the clogging layer or through size exclusion. This study provides insights into bio-clogging in microporous ceramic emitters and may offer a theoretical basis for developing measures to control emitter clogging.
Collapse
Affiliation(s)
- Yaqing Du
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lin Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Fuhui Yang
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wei Zhou
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xuefei He
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
2
|
Zhang H, Ma Y, Yuan S. Molecular Dynamics Study on Adsorption and Desorption of the Model Oligosaccharide above Polymer Antifouling Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17320-17330. [PMID: 39119623 DOI: 10.1021/acs.langmuir.4c01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Polysaccharide foulants play a key role in the adhesion of many fouling organisms, which may cause severe marine biofouling. However, the detailed interaction mechanism between polysaccharides and antifouling membranes is still indistinct compared with that between the fouling protein and antifouling surfaces. In this paper, a model oligosaccharide built based on the monosaccharide composition found in diatom extracellular polymeric substances (EPS) was used as a model foulant to investigate its adsorption and desorption above three T4 antifouling membranes. It was found that the anionic poly(3-(methacryloyloxy)propane-1-sulfonate) (T4-SP) antifouling membrane had excellent antifouling ability with respect to the model oligosaccharide, while the oligosaccharide can be easily adsorbed on the poly(2-(dimethylamino)ethyl methacrylate) (T4-DM) membrane with vdW attraction and on the zwitterionic poly(sulfobetaine methacrylate) (T4-SB) membrane with electrostatic attraction. As little is known about the details of polysaccharides' adsorption above antifouling membranes at the molecular level, we hope this work will serve as a theoretical basis for finding more effective materials to prevent or control marine biofouling.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan 250199, P. R. China
- Shandong Chambroad Holding Co., Ltd., Binzhou 256500, Shandong, P. R. China
| | - Ying Ma
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan 250199, P. R. China
| | - Shiling Yuan
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan 250199, P. R. China
| |
Collapse
|
3
|
Chen LH, Hu JN. Development of nano-delivery systems for loaded bioactive compounds: using molecular dynamics simulations. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38206576 DOI: 10.1080/10408398.2023.2301427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decade, a remarkable surge in the development of functional nano-delivery systems loaded with bioactive compounds for healthcare has been witnessed. Notably, the demanding requirements of high solubility, prolonged circulation, high tissue penetration capability, and strong targeting ability of nanocarriers have posed interdisciplinary research challenges to the community. While extensive experimental studies have been conducted to understand the construction of nano-delivery systems and their metabolic behavior in vivo, less is known about these molecular mechanisms and kinetic pathways during their metabolic process in vivo, and lacking effective means for high-throughput screening. Molecular dynamics (MD) simulation techniques provide a reliable tool for investigating the design of nano-delivery carriers encapsulating these functional ingredients, elucidating the synthesis, translocation, and delivery of nanocarriers. This review introduces the basic MD principles, discusses how to apply MD simulation to design nanocarriers, evaluates the ability of nanocarriers to adhere to or cross gastrointestinal mucosa, and regulates plasma proteins in vivo. Moreover, we presented the critical role of MD simulation in developing delivery systems for precise nutrition and prospects for the future. This review aims to provide insights into the implications of MD simulation techniques for designing and optimizing nano-delivery systems in the healthcare food industry.
Collapse
Affiliation(s)
- Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Hafner R, Klein P, Urbassek HM. Adsorption of Diclofenac and Its UV Phototransformation Products in an Aqueous Solution on PVDF: A Molecular Modeling Study. J Phys Chem B 2023; 127:7181-7193. [PMID: 37549100 PMCID: PMC10440796 DOI: 10.1021/acs.jpcb.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Indexed: 08/09/2023]
Abstract
The presence of pharmaceuticals in drinking water has generated considerable scientific interest in potential improvements to polymeric membranes for water purification at the nanoscale. In this work, we investigate the adsorption of diclofenac and its ultraviolet (UV) phototransformation products on amorphous and crystalline poly(vinylidene difluoride) (PVDF) membrane surfaces at the nanoscale using molecular modeling. We report binding affinities by determining the free energy landscape via the extended adaptive biasing force method. The high binding affinities of the phototransformation products found are consistent with qualitative experimental results. For diclofenac, we found similar or better affinities than those for the phototransformation products, which seems to be in contrast to the experimental findings. This discrepancy can only be explained if the maximum adsorption density of diclofenac is much lower than that of the products. Overall, negligible differences between the adsorption affinities of the crystalline phases are observed, suggesting that no tuning of the PVDF surfaces is necessary to optimize filtration capabilities.
Collapse
Affiliation(s)
- René Hafner
- Physics
Department and Research Center OPTIMAS, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
- Fraunhofer
ITWM, Fraunhofer-Platz
1, 67663 Kaiserslautern, Germany
| | - Peter Klein
- Fraunhofer
ITWM, Fraunhofer-Platz
1, 67663 Kaiserslautern, Germany
| | - Herbert M. Urbassek
- Physics
Department and Research Center OPTIMAS, University Kaiserslautern-Landau, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
|
6
|
Mollazadeh S, Babaei S, Ostadhassan M, Yazdian-Robati R. Concentration-dependent assembly of Bovine serum albumin molecules in the doxorubicin loading process: Molecular dynamics simulation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Wang S, Ou X, Yi M, Li J. Spontaneous desorption of protein from self-assembled monolayer (SAM)-coated gold nanoparticles induced by high temperature. Phys Chem Chem Phys 2022; 24:2363-2370. [PMID: 35018922 DOI: 10.1039/d1cp04000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nonspecific binding of proteins with nanomaterials (NMs) is a dynamic reversible process including both protein adsorption and desorption parts, which is crucial for controlled release of protein drug loaded by nanocarriers. The nonspecific binding of proteins is susceptible to high temperature, whereas its underlying mechanism still remains elusive. Here, the binding behavior of human serum albumin (HSA) with an amino-terminated self-assembled monolayer (SAM)-coated gold (111) surface was investigated by using molecular dynamics (MD) simulations. HSA binds to the SAM surface through salt bridges at 300 K. As the temperature increases to 350 K, HSA maintains its native structure, while the salt bridges largely diminish owing to the considerable lateral diffusion of HSA on the SAM. Moreover, the interfacial water located between HSA and the SAM gets increased and prevents the reformation of the salt bridges of HSA with the SAM, which reduces the binding affinity of HSA. And HSA eventually desorbs from the SAM. The depiction of thermally induced spontaneous protein desorption enriches our understanding of reversible binding behavior of protein with NMs, and may provide new insights into the controlled release of protein drugs delivered by using nanocarriers under the regulation of high temperature.
Collapse
Affiliation(s)
- Shuai Wang
- College of informatics, Huazhong Agricultural University, Wuhan 430070, China.,Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Xinwen Ou
- Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Ming Yi
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China.
| | - Jingyuan Li
- Department of Physics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
8
|
Nanocomposite cation-exchange membranes for wastewater electrodialysis: organic fouling, desalination performance, and toxicity testing. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Wu X, Wang C, Hao P, He F, Yao Z, Zhang X. Adsorption properties of albumin and fibrinogen on hydrophilic/hydrophobic TiO 2 surfaces: A molecular dynamics study. Colloids Surf B Biointerfaces 2021; 207:111994. [PMID: 34303996 DOI: 10.1016/j.colsurfb.2021.111994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023]
Abstract
In serval experimental researches, UV-induced hydrophilicity enabled better hemocompatibility in the TiO2 surface, which was considered to be caused by the removal of the carboxylic acid contamination from the surface. In this paper, we altered the surface wetting property by applying the formate contamination on the rutile (110) surface, and systematically investigated the adsorption properties of albumin and fibrinogen on hydrophilic/hydrophobic TiO2 surface. Unique contacts were found between the charged residues and the hydrophilic surface, anchoring the protein on the surface. The small size and the heart shape of albumin make it easy to cross the stable water layers near the surface. Besides, albumin has a higher proportion of charged residues, so it can form more unique contacts on the hydrophilic surface. Therefore, the albumin tends to adsorb on the hydrophilic surface. For the hydrophobic surface, the water layers near the surface are weakened, which helps the fibrinogen diffusing to the surface and adjusting its orientation. Although the hydrophobic surface cannot form the unique contacts, the larger size of fibrinogen can provide more residues to form enough ordinary contacts after adjusting, and then achieves stable adsorption. Therefore, fibrinogen tends to adsorb on the hydrophobic surface.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Chenyang Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Pengfei Hao
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Feng He
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Zhaohui Yao
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiwen Zhang
- Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Ma Y, Zydney AL, Wang R, Chew JW. Molecular dynamics study on membrane fouling by oppositely charged proteins. AIChE J 2021. [DOI: 10.1002/aic.17335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yunqiao Ma
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute Nanyang Technological University Singapore Singapore
| | - Andrew L. Zydney
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute Nanyang Technological University Singapore Singapore
- School of Civil and Environmental Engineering Nanyang Technological University Singapore Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute Nanyang Technological University Singapore Singapore
| |
Collapse
|
11
|
Xin Y, Yin F. A combined experimental and molecular simulation study of lube oil dewaxing solvent recovery using membrane. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Tiwari S, Gogoi A, Anki Reddy K. Effect of an ionic environment on membrane fouling: a molecular dynamics study. Phys Chem Chem Phys 2021; 23:5001-5011. [PMID: 33624656 DOI: 10.1039/d0cp05268j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effect of the ionic environment on membrane fouling was investigated for polyamide (PA) and graphene oxide (GO) membranes using equilibrium molecular dynamics (MD) simulations. For each of these membranes, bovine serum albumin (BSA) was considered as the model foulant. The effect of the foulant on the membranes is investigated at seawater concentration and also in a normal aqueous environment. We investigated the translational and rotational motion of the protein relative to the membrane, interaction energy between the protein and the membrane surface, structural changes in the protein, and ion distribution around the protein and the membrane surface for all the systems. We found that the effects of ions were very different on both the membranes. Specifically, with an increase in ionic strength, the repulsion between the protein and membrane was observed in the case of GO, while for PA, no significant changes were observed for the same. Also, the ion distribution around the protein and the membrane surface were found to be different. In particular, for GO, there were more number of chloride ions around the protein and the membrane than that of sodium ions, which was probably the reason for the repulsion in the case of GO. However, in the case of PA, the membrane surface did not exhibit any affinity towards a specific ion, and the protein in the case of PA was surrounded by more number of sodium ions than chloride ions.
Collapse
Affiliation(s)
- Shivam Tiwari
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | | |
Collapse
|
13
|
Affiliation(s)
- Yunqiao Ma
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute Nanyang Technological University Singapore Singapore
| | - Andrew L. Zydney
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute Nanyang Technological University Singapore Singapore
| |
Collapse
|
14
|
Nagai T, Tsurumaki S, Urano R, Fujimoto K, Shinoda W, Okazaki S. Position-Dependent Diffusion Constant of Molecules in Heterogeneous Systems as Evaluated by the Local Mean Squared Displacement. J Chem Theory Comput 2020; 16:7239-7254. [DOI: 10.1021/acs.jctc.0c00448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tetsuro Nagai
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Shuhei Tsurumaki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Ryo Urano
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Kazushi Fujimoto
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Susumu Okazaki
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
15
|
Xu H, Xiao K, Wang X, Liang S, Wei C, Wen X, Huang X. Outlining the Roles of Membrane-Foulant and Foulant-Foulant Interactions in Organic Fouling During Microfiltration and Ultrafiltration: A Mini-Review. Front Chem 2020; 8:417. [PMID: 32582627 PMCID: PMC7283953 DOI: 10.3389/fchem.2020.00417] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Membrane fouling remains a notorious problem in microfiltration (MF) and ultrafiltration (UF), and a systematic understanding of the fouling mechanisms is fundamental for solving this problem. Given a wide assortment of fouling studies in the literature, it is essential that the numerous pieces of information on this topic could be clearly compiled. In this review, we outline the roles of membrane-foulant and foulant-foulant intermolecular interactions in MF/UF organic fouling. The membrane-foulant interactions govern the initial pore blocking and adsorption stage, whereas the foulant-foulant interactions prevail in the subsequent build-up of a surface foulant layer (e.g., a gel layer). We classify the interactions into non-covalent interactions (e.g., hydrophobic and electrostatic interactions), covalent interactions (e.g., metal-organic complexation), and spatial effects (related to pore structure, surface morphology, and foulants size for instance). They have either short- or long-range influences on the transportation and immobilization of the foulant toward the membrane. Specifically, we profile the individual impacts and interplay between the different interactions along the fouling stages. Finally, anti-fouling strategies are discussed for a targeted control of the membrane-foulant and foulant-foulant interactions.
Collapse
Affiliation(s)
- Hao Xu
- School of Civil Engineering, Guangzhou University, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Shuai Liang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Chunhai Wei
- School of Civil Engineering, Guangzhou University, Guangzhou, China
| | - Xianghua Wen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Chew JW, Kilduff J, Belfort G. The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117865] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
El Meragawi S, Akbari A, Hernandez S, Tanksale A, Majumder M. Efficient Permeance Recovery of Organically Fouled Graphene Oxide Membranes. ACS APPLIED BIO MATERIALS 2020; 3:584-592. [PMID: 35019402 DOI: 10.1021/acsabm.9b00975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The emergence of facile approaches for the large-scale production of graphene oxide (GO) membranes necessitates a clearer understanding of their potential to foul and, more importantly, strategies for efficient recovery of membrane performance following fouling. Here, we systematically investigated the feasibility of water, ethanol, and hypochlorite as cleaning agents to remove organic foulants over a GO membrane. Among them, 100 ppm hypochlorite solution showed a remarkable ability to remove bovine serum albumin (BSA) and could recover the membrane flux up to 98% after five cycles of BSA filtration and cleaning. The potential of hypochlorite was also demonstrated for permeance recovery during molecular filtration of tannic acid and methyl blue. Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD) analyses were used to study the oxidative effects of hypochlorite on the GO membrane, and it was determined that exposure to higher concentrations of hypochlorite (>1000 ppm) degrades the structure of GO membrane and deteriorates the membrane performance after three cycles of cleaning. The studies demonstrate that the use of a modest concentration of hypochlorite is effective in restoring permeance of this class of high flux nanofiltration membranes.
Collapse
|
18
|
|
19
|
Kitano H, Takeuchi K, Ortiz-Medina J, Cruz-Silva R, Morelos-Gomez A, Fujii M, Obata M, Yamanaka A, Tejima S, Fujishige M, Akuzawa N, Yamaguchi A, Endo M. Enhanced Antifouling Feed Spacer Made from a Carbon Nanotube-Polypropylene Nanocomposite. ACS OMEGA 2019; 4:15496-15503. [PMID: 31572850 PMCID: PMC6761618 DOI: 10.1021/acsomega.9b01757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Spacers are widely used in membrane technologies to reduce fouling and concentration polarization. Fouling can start from the spacer surface and grow, thereby reducing flux, selectivity, and operation lifetime. Fluorescein isothiocyanate labeled bovine serum albumin was used for fouling studies and observed during cross-flow filtration operation for up to 144 h. Here, we mixed carbon nanotubes (CNTs) and polypropylene (PP) to make a spacer with better antifouling than plain PP spacers. The fouling process was observed by scanning electron microscopy and monitored in situ by fluorescence microscopy. Molecular dynamics simulations show that bovine serum albumin has a lower interaction energy with the nanocomposite CNTs/PP spacer than with the plain PP. The findings are relevant for the development of spacers to improve the operation lifetime of membranes in filtration technologies.
Collapse
Affiliation(s)
- Hiroki Kitano
- Kitagawa
Industries Co., Kasugai, Aichi 480-0303, Japan
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Kenji Takeuchi
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Josue Ortiz-Medina
- Facultad
de Ingeniería, Universidad Panamericana, Josemaría Escrivá
de Balaguer 101, Aguascalientes, Aguascalientes 20290, Mexico
| | - Rodolfo Cruz-Silva
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Aaron Morelos-Gomez
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Moeka Fujii
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Michiko Obata
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Ayaka Yamanaka
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Research
Organization for Information Science & Technology, 2-32-3, Kitashinagawa, Shinagawa-ku, Tokyo 140-0001, Japan
| | - Shogo Tejima
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Research
Organization for Information Science & Technology, 2-32-3, Kitashinagawa, Shinagawa-ku, Tokyo 140-0001, Japan
| | - Masatsugu Fujishige
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Noboru Akuzawa
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Akio Yamaguchi
- Kitagawa
Industries Co., Kasugai, Aichi 480-0303, Japan
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Morinobu Endo
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
20
|
|
21
|
Quan X, Liu J, Zhou J. Multiscale modeling and simulations of protein adsorption: progresses and perspectives. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2018.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Liu ZY, Jiang Q, Jin Z, Sun Z, Ma W, Wang Y. Understanding the Antifouling Mechanism of Zwitterionic Monomer-Grafted Polyvinylidene Difluoride Membranes: A Comparative Experimental and Molecular Dynamics Simulation Study. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14408-14417. [PMID: 30895780 DOI: 10.1021/acsami.8b22059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The antifouling process of the membrane is very vital for the highly efficient treatment of industrial wastewater, especially high salinity wastewater containing oil and other pollutants. In the present work, the dynamical antifouling mechanism is explored via molecular dynamics simulations, while the corresponding experiments about surface properties of the zwitterionic monomer-grafted polyvinylidene difluoride membrane are designed to verify the simulated mechanism. Water can form a stable hydration layer at the grafted membrane surface, where all the simulated radial distribution function of water/membrane, hydrogen bond number, water diffusivity, and experimental oil contact angles are stable. However, the water flux across the membrane will increase first and then decrease as the grafting ratio increases, which not only depends on the reduced pore size of the zwitterionic monomer-grafted membrane but also results from water diffusion. Furthermore, the dynamical fouling processes of pollutants (taking sodium alginate as an example) on the grafted membrane in water and brine solution are investigated, where both the high grafting ratio and electrolyte CaCl2 can enhance the fouling energy barrier of the pollutant. The results show that both the enhanced hydrophilic property and the electrostatic repulsion can affect the antifouling capability of the grafted membrane. Finally, the ternary synergistic antifouling mechanisms among the zwitterionic membrane, electrolyte, and pollutant sodium alginates are discussed, which could be helpful for the rational design and preparation of new and highly efficient zwitterionic antifouling membranes.
Collapse
Affiliation(s)
- Zi-Yu Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Qin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Zhiqiang Jin
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering , Beijing University of Chemical Technology , Beijing 100029 , People's Republic of China
| | - Wangjing Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems , Institute of Process Engineering , Beijing 100190 , People's Republic of China
| |
Collapse
|
23
|
Tiwari S, Gogoi A, Reddy KA. What governs the nature of fouling in forward osmosis (FO) and reverse osmosis (RO)? A molecular dynamics study. Phys Chem Chem Phys 2019; 21:24165-24176. [DOI: 10.1039/c9cp04393d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Difference in the distribution of water molecules around the protein leads to different fouling structures in FO and RO.
Collapse
Affiliation(s)
- Shivam Tiwari
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- India
| | - Abhijit Gogoi
- Department of Mechanical Engineering
- Indian Institute of Technology Guwahati
- India
| | - K. Anki Reddy
- Department of Chemical Engineering
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|