1
|
Noid WG, Szukalo RJ, Kidder KM, Lesniewski MC. Rigorous Progress in Coarse-Graining. Annu Rev Phys Chem 2024; 75:21-45. [PMID: 38941523 DOI: 10.1146/annurev-physchem-062123-010821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Low-resolution coarse-grained (CG) models provide remarkable computational and conceptual advantages for simulating soft materials. In principle, bottom-up CG models can reproduce all structural and thermodynamic properties of atomically detailed models that can be observed at the resolution of the CG model. This review discusses recent progress in developing theory and computational methods for achieving this promise. We first briefly review variational approaches for parameterizing interaction potentials and their relationship to machine learning methods. We then discuss recent approaches for simultaneously improving both the transferability and thermodynamic properties of bottom-up models by rigorously addressing the density and temperature dependence of these potentials. We also briefly discuss exciting progress in modeling high-resolution observables with low-resolution CG models. More generally, we highlight the essential role of the bottom-up framework not only for fundamentally understanding the limitations of prior CG models but also for developing robust computational methods that resolve these limitations in practice.
Collapse
Affiliation(s)
- W G Noid
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Ryan J Szukalo
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
- Current affiliation: Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Katherine M Kidder
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Maria C Lesniewski
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
2
|
Izvekov S, Kroonblawd MP, Larentzos JP, Brennan JK, Rice BM. Maximum Entropy Theory of Multiscale Coarse-Graining via Matching Thermodynamic Forces: Application to a Molecular Crystal (TATB). J Phys Chem B 2024. [PMID: 38489758 DOI: 10.1021/acs.jpcb.3c07078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The MSCG/FM (multiscale coarse-graining via force-matching) approach is an efficient supervised machine learning method to develop microscopically informed coarse-grained (CG) models. We present a theory based on the principle of maximum entropy (PME) enveloping the existing MSCG/FM approaches. This theory views the MSCG/FM method as a special case of matching the thermodynamic forces from the extended ensemble described by the set of thermodynamic (relevant) system coordinates. This set may include CG coordinates, the stress tensor, applied external fields, and so forth, and may be characterized by nonequilibrium conditions. Following the presentation of the theory, we discuss the consistent matching of both bonded and nonbonded interactions. The proposed PME formulation is used as a starting point to extend the MSCG/FM method to the constant strain ensemble, which together with the explicit matching of the bonded forces is better suited for coarse-graining anisotropic media at a submolecular resolution. The theory is demonstrated by performing the fine coarse-graining of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a well-known insensitive molecular energetic material, which exhibits highly anisotropic mechanical properties.
Collapse
Affiliation(s)
- Sergei Izvekov
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - James P Larentzos
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - John K Brennan
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Betsy M Rice
- U.S. Army DEVCOM Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| |
Collapse
|
3
|
Chio CC, Tse YLS. Reparameterization of Polarizable Force Fields for Studying Ion Transfer across Liquid-Liquid Interfaces. J Phys Chem B 2024; 128:1987-1999. [PMID: 38356148 DOI: 10.1021/acs.jpcb.3c07055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We have developed a general scheme for refining classical polarizable molecular dynamics (MD) force fields that can accurately describe the molecular interactions in systems with liquid-liquid interfaces. While ab initio MD (AIMD) simulations can naturally describe molecular interactions, they are often so computationally expensive that simulating large system sizes and/or long time scales is usually infeasible. To resolve this, we parameterized efficient and accurate classical polarizable force fields that use AIMD reference data by minimizing both the relative entropy and the root mean squared deviation in atomic forces. We utilized our new multiscale models to study chloride ion transfer across the water-dichloromethane (DCM) interface with and without the tetraethylammonium cation as the phase-transfer catalyst. Our calculated free-energy barrier for the water-DCM interface is consistent with the other reported simulation results. We further analyzed the ion-transfer process by studying the hydration shell structures around the chloride ion and the ion-pair formation to better understand the mechanism. We observed that electronic polarizability is an important factor for the studied phase-transfer catalyst to lower the free-energy barrier of the ion transfer. Using the water-benzene interface system as an additional example, we show that our parameterization scheme provides a general route for modeling different liquid-liquid interface systems even when the experimental data or force field parameters are not readily available.
Collapse
Affiliation(s)
- Chung Chi Chio
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Ying-Lung Steve Tse
- Department of Chemistry, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
4
|
Petix CL, Fakhraei M, Kieslich CA, Howard MP. Surrogate Modeling of the Relative Entropy for Inverse Design Using Smolyak Sparse Grids. J Chem Theory Comput 2024; 20:1538-1546. [PMID: 37703086 DOI: 10.1021/acs.jctc.3c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Relative entropy minimization, a statistical-mechanics approach for finding potential energy functions that produce target structural ensembles, has proven to be a powerful strategy for the inverse design of nanoparticle self-assembly. For a given target structure, the gradient of the relative entropy with respect to the adjustable parameters of the potential energy function is computed by performing a simulation, and then these parameters are updated using iterative gradient-based optimization. Small parameter updates per iteration and many iterations can be required for numerical stability, but this incurs considerable computational expense because a new simulation must be performed to reevaluate the gradient at each iteration. Here, we investigate the use of surrogate modeling to decouple the process of minimizing the relative entropy from the computationally demanding process of determining its gradient. We approximate the relative-entropy gradient using Chebyshev polynomial interpolation on Smolyak sparse grids. Our approach potentially increases the robustness and computational efficiency of using the relative entropy for inverse design, primarily for physically informed potential energy functions that have a small number of adjustable parameters.
Collapse
Affiliation(s)
- C Levi Petix
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Mohammadreza Fakhraei
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Chris A Kieslich
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Michael P Howard
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
Lesniewski MC, Noid WG. Insight into the Density-Dependence of Pair Potentials for Predictive Coarse-Grained Models. J Phys Chem B 2024; 128:1298-1316. [PMID: 38271676 DOI: 10.1021/acs.jpcb.3c06890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We investigate the temperature- and density-dependence of effective pair potentials for 1-site coarse-grained (CG) models of two industrial solvents, 1,4-dioxane and tetrahydrofuran. We observe that the calculated pair potentials are much more sensitive to density than to temperature. The generalized-Yvon-Born-Green framework reveals that this striking density-dependence reflects corresponding variations in the many-body correlations that determine the environment-mediated indirect contribution to the pair mean force. Moreover, we demonstrate, perhaps surprisingly, that this density-dependence is not important for accurately modeling the intermolecular structure. Accordingly, we adopt a density-independent interaction potential and transfer the density-dependence of the calculated pair potentials into a configuration-independent volume potential. Furthermore, we develop a single global potential that accurately models the intermolecular structure and pressure-volume equation of state across a very wide range of liquid state points. Consequently, this work provides fundamental insight into the density-dependence of effective pair potentials and also provides a significant step toward developing predictive CG models for efficiently modeling industrial solvents.
Collapse
Affiliation(s)
- Maria C Lesniewski
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Jin J, Hwang J, Voth GA. Gaussian representation of coarse-grained interactions of liquids: Theory, parametrization, and transferability. J Chem Phys 2023; 159:184105. [PMID: 37942867 DOI: 10.1063/5.0160567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from effective CG interactions. We then introduce Gaussian basis functions corresponding to the system's characteristic length by linking these Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG models of liquids with enhanced extensibility.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Jisung Hwang
- Department of Statistics, The University of Chicago, 5747 S. Ellis Ave., Chicago, Illinois 60637, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, USA
| |
Collapse
|
7
|
Sahrmann P, Loose TD, Durumeric AEP, Voth GA. Utilizing Machine Learning to Greatly Expand the Range and Accuracy of Bottom-Up Coarse-Grained Models through Virtual Particles. J Chem Theory Comput 2023; 19:4402-4413. [PMID: 36802592 PMCID: PMC10373655 DOI: 10.1021/acs.jctc.2c01183] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 02/22/2023]
Abstract
Coarse-grained (CG) models parametrized using atomistic reference data, i.e., "bottom up" CG models, have proven useful in the study of biomolecules and other soft matter. However, the construction of highly accurate, low resolution CG models of biomolecules remains challenging. We demonstrate in this work how virtual particles, CG sites with no atomistic correspondence, can be incorporated into CG models within the context of relative entropy minimization (REM) as latent variables. The methodology presented, variational derivative relative entropy minimization (VD-REM), enables optimization of virtual particle interactions through a gradient descent algorithm aided by machine learning. We apply this methodology to the challenging case of a solvent-free CG model of a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer and demonstrate that introduction of virtual particles captures solvent-mediated behavior and higher-order correlations which REM alone cannot capture in a more standard CG model based only on the mapping of collections of atoms to the CG sites.
Collapse
Affiliation(s)
- Patrick
G. Sahrmann
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois 60637, United
States
| | - Timothy D. Loose
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois 60637, United
States
| | - Aleksander E. P. Durumeric
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois 60637, United
States
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center
for Theoretical Chemistry, James Franck Institute, and Institute for
Biophysical Dynamics, The University of
Chicago, Chicago, Illinois 60637, United
States
| |
Collapse
|
8
|
Ge P, Zhang L, Lei H. Machine learning assisted coarse-grained molecular dynamics modeling of meso-scale interfacial fluids. J Chem Phys 2023; 158:064104. [PMID: 36792498 DOI: 10.1063/5.0131567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A hallmark of meso-scale interfacial fluids is the multi-faceted, scale-dependent interfacial energy, which often manifests different characteristics across the molecular and continuum scale. The multi-scale nature imposes a challenge to construct reliable coarse-grained (CG) models, where the CG potential function needs to faithfully encode the many-body interactions arising from the unresolved atomistic interactions and account for the heterogeneous density distributions across the interface. We construct the CG models of both single- and two-component polymeric fluid systems based on the recently developed deep coarse-grained potential [Zhang et al., J. Chem. Phys. 149, 034101 (2018)] scheme, where each polymer molecule is modeled as a CG particle. By only using the training samples of the instantaneous force under the thermal equilibrium state, the constructed CG models can accurately reproduce both the probability density function of the void formation in bulk and the spectrum of the capillary wave across the fluid interface. More importantly, the CG models accurately predict the volume-to-area scaling transition for the apolar solvation energy, illustrating the effectiveness to probe the meso-scale collective behaviors encoded with molecular-level fidelity.
Collapse
Affiliation(s)
- Pei Ge
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - Huan Lei
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
9
|
Tang J, Kobayashi T, Zhang H, Fukuzawa K, Itoh S. Enhancing pressure consistency and transferability of structure-based coarse-graining. Phys Chem Chem Phys 2023; 25:2256-2264. [PMID: 36594875 DOI: 10.1039/d2cp04849c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Coarse-graining, which models molecules with coarse-grained (CG) beads, allows molecular dynamics simulations to be applied to systems with large length and time scales while preserving the essential molecular structure. However, CG models generally have insufficient representability and transferability. A commonly used method to resolve this problem is multi-state iterative Boltzmann inversion (MS-IBI) with pressure correction, which matches both the structural properties and pressures at different thermodynamic states between CG and all-atom (AA) simulations. Nevertheless, this method is usually effective only in a narrow pressure range. In this paper, we propose a modified CG scheme to overcome this limitation. We find that the fundamental reason for this limitation is that CG beads at close distances are ellipsoids rather than isotropically compressed spheres, as described in conventional CG models. Hence, we propose a method to compensate for such differences by slightly modifying the radial distribution functions (RDFs) derived from AA simulations and using the modified RDFs as references for pressure-corrected MS-IBI. We also propose a method to determine the initial non-bonded potential using both the target RDF and pressure. Using n-dodecane as a case study, we demonstrate that the CG model developed using our scheme reproduces the RDFs and pressures over a wide range of pressure states, including three reference low-pressure states and two test high-pressure states. The proposed scheme allows for accurate CG simulations of systems in which pressure or density varies with time and/or position.
Collapse
Affiliation(s)
- Jiahao Tang
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Takayuki Kobayashi
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hedong Zhang
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Kenji Fukuzawa
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shintaro Itoh
- Department of Micro-Nano Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
10
|
Bernhardt MP, Hanke M, van der Vegt NF. Stability, Speed, and Constraints for Structural Coarse-Graining in VOTCA. J Chem Theory Comput 2023; 19:580-595. [PMID: 36631066 PMCID: PMC9878733 DOI: 10.1021/acs.jctc.2c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 01/13/2023]
Abstract
Structural coarse-graining involves the inverse problem of deriving pair potentials that reproduce target radial distribution functions. Despite its clear mathematical formulation, there are open questions about the existing methods concerning speed, stability, and physical representability of the resulting potentials. In this work, we make progress on several aspects of iterative methods used to solve the inverse problem. Based on integral equation theory, we derive fast Gauss-Newton schemes applicable to very general systems, including molecules with bonds and mixtures. Our methods are similar to inverse Monte Carlo in terms of convergence speed and have a similar cost per iteration as iterative Boltzmann inversion. We investigate stability problems in our schemes and in the inverse Monte Carlo method and propose modifications to fix them. Furthermore, we establish how the pair potential can be constrained at each iteration to reproduce the pressure, Kirkwood-Buff integral, or the enthalpy of vaporization. We demonstrate the potential of our approach in deriving coarse-grained force fields for nine different solvents and their mixtures. All methods described are implemented in the free and open VOTCA software framework for systematic coarse-graining.
Collapse
Affiliation(s)
- Marvin P. Bernhardt
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287Darmstadt, Germany
| | - Martin Hanke
- Institut
für Mathematik, Johannes Gutenberg-Universität
Mainz, Staudingerweg 9, 55128Mainz, Germany
| | - Nico F.A. van der Vegt
- Eduard-Zintl-Institut
für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287Darmstadt, Germany
| |
Collapse
|
11
|
Thaler S, Stupp M, Zavadlav J. Deep coarse-grained potentials via relative entropy minimization. J Chem Phys 2022; 157:244103. [PMID: 36586977 DOI: 10.1063/5.0124538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neural network (NN) potentials are a natural choice for coarse-grained (CG) models. Their many-body capacity allows highly accurate approximations of the potential of mean force, promising CG simulations of unprecedented accuracy. CG NN potentials trained bottom-up via force matching (FM), however, suffer from finite data effects: They rely on prior potentials for physically sound predictions outside the training data domain, and the corresponding free energy surface is sensitive to errors in the transition regions. The standard alternative to FM for classical potentials is relative entropy (RE) minimization, which has not yet been applied to NN potentials. In this work, we demonstrate, for benchmark problems of liquid water and alanine dipeptide, that RE training is more data efficient, due to accessing the CG distribution during training, resulting in improved free energy surfaces and reduced sensitivity to prior potentials. In addition, RE learns to correct time integration errors, allowing larger time steps in CG molecular dynamics simulation, while maintaining accuracy. Thus, our findings support the use of training objectives beyond FM, as a promising direction for improving CG NN potential's accuracy and reliability.
Collapse
Affiliation(s)
- Stephan Thaler
- Multiscale Modeling of Fluid Materials, Department of Engineering Physics and Computation, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Maximilian Stupp
- Multiscale Modeling of Fluid Materials, Department of Engineering Physics and Computation, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| | - Julija Zavadlav
- Multiscale Modeling of Fluid Materials, Department of Engineering Physics and Computation, TUM School of Engineering and Design, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Schmid F. Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128Mainz, Germany
| |
Collapse
|
13
|
Jin J, Pak AJ, Durumeric AEP, Loose TD, Voth GA. Bottom-up Coarse-Graining: Principles and Perspectives. J Chem Theory Comput 2022; 18:5759-5791. [PMID: 36070494 PMCID: PMC9558379 DOI: 10.1021/acs.jctc.2c00643] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/14/2023]
Abstract
Large-scale computational molecular models provide scientists a means to investigate the effect of microscopic details on emergent mesoscopic behavior. Elucidating the relationship between variations on the molecular scale and macroscopic observable properties facilitates an understanding of the molecular interactions driving the properties of real world materials and complex systems (e.g., those found in biology, chemistry, and materials science). As a result, discovering an explicit, systematic connection between microscopic nature and emergent mesoscopic behavior is a fundamental goal for this type of investigation. The molecular forces critical to driving the behavior of complex heterogeneous systems are often unclear. More problematically, simulations of representative model systems are often prohibitively expensive from both spatial and temporal perspectives, impeding straightforward investigations over possible hypotheses characterizing molecular behavior. While the reduction in resolution of a study, such as moving from an atomistic simulation to that of the resolution of large coarse-grained (CG) groups of atoms, can partially ameliorate the cost of individual simulations, the relationship between the proposed microscopic details and this intermediate resolution is nontrivial and presents new obstacles to study. Small portions of these complex systems can be realistically simulated. Alone, these smaller simulations likely do not provide insight into collectively emergent behavior. However, by proposing that the driving forces in both smaller and larger systems (containing many related copies of the smaller system) have an explicit connection, systematic bottom-up CG techniques can be used to transfer CG hypotheses discovered using a smaller scale system to a larger system of primary interest. The proposed connection between different CG systems is prescribed by (i) the CG representation (mapping) and (ii) the functional form and parameters used to represent the CG energetics, which approximate potentials of mean force (PMFs). As a result, the design of CG methods that facilitate a variety of physically relevant representations, approximations, and force fields is critical to moving the frontier of systematic CG forward. Crucially, the proposed connection between the system used for parametrization and the system of interest is orthogonal to the optimization used to approximate the potential of mean force present in all systematic CG methods. The empirical efficacy of machine learning techniques on a variety of tasks provides strong motivation to consider these approaches for approximating the PMF and analyzing these approximations.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander J. Pak
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander E. P. Durumeric
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy D. Loose
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Nkepsu Mbitou RL, Goujon F, Dequidt A, Latour B, Devémy J, Blaak R, Martzel N, Emeriau-Viard C, Tchoufag J, Garruchet S, Munch E, Hauret P, Malfreyt P. Consistent and Transferable Force Fields for Statistical Copolymer Systems at the Mesoscale. J Chem Theory Comput 2022; 18:6940-6951. [PMID: 36205431 DOI: 10.1021/acs.jctc.2c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The statistical trajectory matching (STM) method was applied successfully to derive coarse grain (CG) models for bulk properties of homopolymers. The extension of the methodology for building CG models for statistical copolymer systems is much more challenging. We present here the strategy for developing CG models for styrene-butadiene-rubber, and we compare the quality of the resulting CG force fields on the structure and thermodynamics at different chemical compositions. The CG models are used through the use of a genuine mesoscopic method called the dissipative particle dynamics method and compared to high-resolution molecular dynamics simulations. We conclude that the STM method is able to produce coarse-grained potentials that are transferable in composition by using only a few reference systems. Additionally, this methodology can be applied on any copolymer system.
Collapse
Affiliation(s)
- R L Nkepsu Mbitou
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France.,Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - F Goujon
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - A Dequidt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - B Latour
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - J Devémy
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - R Blaak
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| | - N Martzel
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - C Emeriau-Viard
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - J Tchoufag
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - S Garruchet
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - E Munch
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - P Hauret
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes, 63040Clermont-Ferrand, France
| | - P Malfreyt
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, F-63000Clermont-Ferrand, France
| |
Collapse
|
15
|
Kanekal KH, Rudzinski JF, Bereau T. Broad chemical transferability in structure-based coarse-graining. J Chem Phys 2022; 157:104102. [DOI: 10.1063/5.0104914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Compared to top-down coarse-grained (CG) models, bottom-up approaches are capable of offering higher structural fidelity. This fidelity results from the tight link to a higher-resolution reference, making the CG model chemically specific. Unfortunately, chemical specificity can be at odds with compound-screening strategies, which call for transferable parametrizations. Here we present an approach to reconcile bottom-up, structure-preserving CG models with chemical transferability. We consider the bottom-up CG parametrization of 3,441 C7O2 small-molecule isomers. Our approach combines atomic representations, unsupervised learning, and a large-scale extended-ensemble force-matching parametrization. We first identify a subset of 19 representative molecules, which maximally encode the local environment of all gas-phase conformers. Reference interactions between the 19 representative molecules were obtained from both homogeneous bulk liquids and various binary mixtures. An extended-ensemble parametrization over all 703 state points leads to a CG model that is both structure-based and chemically transferable. Remarkably, the resulting force field is on average more structurally accurate than single-state-point equivalents. Averaging over the extended ensemble acts as a mean-force regularizer, smoothing out both force and structural correlations that are overly specific to a single state point. Our approach aims at transferability through a set of CG bead types that can be used to easily construct new molecules, while retaining the benefits of a structure-based parametrization.
Collapse
Affiliation(s)
- Kiran H. Kanekal
- AK Kremer - Theory Group, Max Planck Institute for Polymer Research, Germany
| | | | - Tristan Bereau
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Netherlands
| |
Collapse
|
16
|
Monroe JI, Shen VK. Learning Efficient, Collective Monte Carlo Moves with Variational Autoencoders. J Chem Theory Comput 2022; 18:3622-3636. [PMID: 35613327 PMCID: PMC11210279 DOI: 10.1021/acs.jctc.2c00110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Discovering meaningful collective variables for enhancing sampling, via applied biasing potentials or tailored MC move sets, remains a major challenge within molecular simulation. While recent studies identifying collective variables with variational autoencoders (VAEs) have focused on the encoding and latent space discovered by a VAE, the impact of the decoding and its ability to act as a generative model remains unexplored. We demonstrate how VAEs may be used to learn (on-the-fly and with minimal human intervention) highly efficient, collective Monte Carlo moves that accelerate sampling along the learned collective variable. In contrast to many machine learning-based efforts to bias sampling and generate novel configurations, our methods result in exact sampling in the ensemble of interest and do not require reweighting. In fact, we show that the acceptance rates of our moves approach unity for a perfect VAE model. While this is never observed in practice, VAE-based Monte Carlo moves still enhance sampling of new configurations. We demonstrate, however, that the form of the encoding and decoding distributions, in particular the extent to which the decoder reflects the underlying physics, greatly impacts the performance of the trained VAE.
Collapse
Affiliation(s)
- Jacob I Monroe
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Vincent K Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| |
Collapse
|
17
|
Nguyen HTL, Huang DM. Systematic bottom-up molecular coarse-graining via force and torque matching using anisotropic particles. J Chem Phys 2022; 156:184118. [DOI: 10.1063/5.0085006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a systematic and general method for parametrizing coarse-grained molecular models consisting of anisotropic particles from fine-grained (e.g. all-atom) models for condensed-phase molecular dynamics simulations. The method, which we call anisotropic force-matching coarse-graining (AFM-CG), is based on rigorous statistical mechanical principles, enforcing consistency between the coarse-grained and fine-grained phase-space distributions to derive equations for the coarse-grained forces, torques, masses, and moments of inertia in terms of properties of a condensed-phase fine-grained system. We verify the accuracy and efficiency of the method by coarse-graining liquid-state systems of two different anisotropic organic molecules, benzene and perylene, and show that the parametrized coarse-grained models more accurately describe properties of these systems than previous anisotropic coarse-grained models parametrized using other methods that do not account for finite-temperature and many-body effects on the condensed-phase coarse-grained interactions. The AFM-CG method will be useful for developing accurate and efficient dynamical simulation models of condensed-phase systems of molecules consisting of large, rigid, anisotropic fragments, such as liquid crystals, organic semiconductors, and nucleic acids.
Collapse
|
18
|
Impact of morphology on the interfacial tension of liquid-liquid equilibrium interfaces in asymmetric mixtures. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
DeLyser MR, Noid WG. Coarse-grained models for local density gradients. J Chem Phys 2022; 156:034106. [DOI: 10.1063/5.0075291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Michael R. DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
20
|
Yu G, Wilson MR. Molecular simulation studies of self-assembly for a chromonic perylene dye: All-atom studies and new approaches to coarse-graining. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Banerjee A, Lu CY, Dutt M. A hybrid coarse-grained model for structure, solvation and assembly of lipid-like peptides. Phys Chem Chem Phys 2021; 24:1553-1568. [PMID: 34940778 DOI: 10.1039/d1cp04205j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold enormous potential for powering future solid state devices and solar cells. The functionality and integration of these proteins into such devices has been successfully enabled by lipid-like peptides. Yet, a fundamental understanding of the organization of these peptides with respect to the photosynthetic proteins and themselves remains unknown and is critical for guiding the design of such light-activated devices. This study investigates the relative organization of one such peptide sequence V6K2 (V: valine and K: lysine) within assemblies. Given the expansive spatiotemporal scales associated with this study, a hybrid coarse-grained (CG) model which captures the structure, conformation and aggregation of the peptide is adopted. The CG model uses a combination of iterative Boltzmann inversion and force matching to provide insight into the relative organization of V6K2 in assemblies. The CG model reproduces the structure of a V6K2 peptide sequence along with its all atom (AA) solvation structure. The relative organization of multiple peptides in an assembly, as captured by CG simulations, is in agreement with corresponding results from AA simulations. Also, a backmapping procedure reintroduces the AA details of the peptides within the aggregates captured by the CG model to demonstrate the relative organization of the peptides. Furthermore, a large number of peptides self-assemble into an elongated micelle in the CG simulation, which is consistent with experimental findings. The coarse-graining procedure is tested for transferability to longer peptide sequences, and hence can be extended to other amphiphilic peptide sequences.
Collapse
Affiliation(s)
- Akash Banerjee
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Chien Yu Lu
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Meenakshi Dutt
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
22
|
Dhamankar S, Webb MA. Chemically specific coarse‐graining of polymers: Methods and prospects. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Satyen Dhamankar
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| | - Michael A. Webb
- Department of Chemical and Biological Engineering Princeton University Princeton New Jersey USA
| |
Collapse
|
23
|
Potter T, Barrett EL, Miller MA. Automated Coarse-Grained Mapping Algorithm for the Martini Force Field and Benchmarks for Membrane-Water Partitioning. J Chem Theory Comput 2021; 17:5777-5791. [PMID: 34472843 PMCID: PMC8444346 DOI: 10.1021/acs.jctc.1c00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/08/2023]
Abstract
With a view to high-throughput simulations, we present an automated system for mapping and parameterizing organic molecules for use with the coarse-grained Martini force field. The method scales to larger molecules and a broader chemical space than existing schemes. The core of the mapping process is a graph-based analysis of the molecule's bonding network, which has the advantages of being fast, general, and preserving symmetry. The parameterization process pays special attention to coarse-grained beads in aromatic rings. It also includes a method for building efficient and stable frameworks of constraints for molecules with structural rigidity. The performance of the method is tested on a diverse set of 87 neutral organic molecules and the ability of the resulting models to capture octanol-water and membrane-water partition coefficients. In the latter case, we introduce an adaptive method for extracting partition coefficients from free-energy profiles to take into account the interfacial region of the membrane. We also use the models to probe the response of membrane-water partitioning to the cholesterol content of the membrane.
Collapse
Affiliation(s)
- Thomas
D. Potter
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| | - Elin L. Barrett
- Unilever
Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark A. Miller
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| |
Collapse
|
24
|
Pretti E, Shell MS. A microcanonical approach to temperature-transferable coarse-grained models using the relative entropy. J Chem Phys 2021; 155:094102. [PMID: 34496595 DOI: 10.1063/5.0057104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bottom-up coarse-graining methods provide systematic tools for creating simplified models of molecular systems. However, coarse-grained (CG) models produced with such methods frequently fail to accurately reproduce all thermodynamic properties of the reference atomistic systems they seek to model and, moreover, can fail in even more significant ways when used at thermodynamic state points different from the reference conditions. These related problems of representability and transferability limit the usefulness of CG models, especially those of strongly state-dependent systems. In this work, we present a new strategy for creating temperature-transferable CG models using a single reference system and temperature. The approach is based on two complementary concepts. First, we switch to a microcanonical basis for formulating CG models, focusing on effective entropy functions rather than energy functions. This allows CG models to naturally represent information about underlying atomistic energy fluctuations, which would otherwise be lost. Such information not only reproduces energy distributions of the reference model but also successfully predicts the correct temperature dependence of the CG interactions, enabling temperature transferability. Second, we show that relative entropy minimization provides a direct and systematic approach to parameterize such classes of temperature-transferable CG models. We calibrate the approach initially using idealized model systems and then demonstrate its ability to create temperature-transferable CG models for several complex molecular liquids.
Collapse
Affiliation(s)
- Evan Pretti
- Department of Chemical Engineering, Engineering II Building, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA
| | - M Scott Shell
- Department of Chemical Engineering, Engineering II Building, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA
| |
Collapse
|
25
|
Giulini M, Rigoli M, Mattiotti G, Menichetti R, Tarenzi T, Fiorentini R, Potestio R. From System Modeling to System Analysis: The Impact of Resolution Level and Resolution Distribution in the Computer-Aided Investigation of Biomolecules. Front Mol Biosci 2021; 8:676976. [PMID: 34164432 PMCID: PMC8215203 DOI: 10.3389/fmolb.2021.676976] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
The ever increasing computer power, together with the improved accuracy of atomistic force fields, enables researchers to investigate biological systems at the molecular level with remarkable detail. However, the relevant length and time scales of many processes of interest are still hardly within reach even for state-of-the-art hardware, thus leaving important questions often unanswered. The computer-aided investigation of many biological physics problems thus largely benefits from the usage of coarse-grained models, that is, simplified representations of a molecule at a level of resolution that is lower than atomistic. A plethora of coarse-grained models have been developed, which differ most notably in their granularity; this latter aspect determines one of the crucial open issues in the field, i.e. the identification of an optimal degree of coarsening, which enables the greatest simplification at the expenses of the smallest information loss. In this review, we present the problem of coarse-grained modeling in biophysics from the viewpoint of system representation and information content. In particular, we discuss two distinct yet complementary aspects of protein modeling: on the one hand, the relationship between the resolution of a model and its capacity of accurately reproducing the properties of interest; on the other hand, the possibility of employing a lower resolution description of a detailed model to extract simple, useful, and intelligible information from the latter.
Collapse
Affiliation(s)
- Marco Giulini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Marta Rigoli
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Giovanni Mattiotti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Roberto Menichetti
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Thomas Tarenzi
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaele Fiorentini
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Raffaello Potestio
- Physics Department, University of Trento, Trento, Italy.,INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| |
Collapse
|
26
|
Rudzinski JF, Kloth S, Wörner S, Pal T, Kremer K, Bereau T, Vogel M. Dynamical properties across different coarse-grained models for ionic liquids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:224001. [PMID: 33592598 DOI: 10.1088/1361-648x/abe6e1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Room-temperature ionic liquids (RTILs) stand out among molecular liquids for their rich physicochemical characteristics, including structural and dynamic heterogeneity. The significance of electrostatic interactions in RTILs results in long characteristic length- and timescales, and has motivated the development of a number of coarse-grained (CG) simulation models. In this study, we aim to better understand the connection between certain CG parameterization strategies and the dynamical properties and transferability of the resulting models. We systematically compare five CG models: a model largely parameterized from experimental thermodynamic observables; a refinement of this model to increase its structural accuracy; and three models that reproduce a given set of structural distribution functions by construction, with varying intramolecular parameterizations and reference temperatures. All five CG models display limited structural transferability over temperature, and also result in various effective dynamical speedup factors, relative to a reference atomistic model. On the other hand, the structure-based CG models tend to result in more consistent cation-anion relative diffusion than the thermodynamic-based models, for a single thermodynamic state point. By linking short- and long-timescale dynamical behaviors, we demonstrate that the varying dynamical properties of the different CG models can be largely collapsed onto a single curve, which provides evidence for a route to constructing dynamically-consistent CG models of RTILs.
Collapse
Affiliation(s)
| | - Sebastian Kloth
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Svenja Wörner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tamisra Pal
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| |
Collapse
|
27
|
Han Y, Jin J, Voth GA. Constructing many-body dissipative particle dynamics models of fluids from bottom-up coarse-graining. J Chem Phys 2021; 154:084122. [PMID: 33639745 DOI: 10.1063/5.0035184] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since their emergence in the 1990s, mesoscopic models of fluids have been widely used to study complex organization and transport phenomena beyond the molecular scale. Even though these models are designed based on results from physics at the meso- and macroscale, such as fluid mechanics and statistical field theory, the underlying microscopic foundation of these models is not as well defined. This paper aims to build such a systematic connection using bottom-up coarse-graining methods. From the recently developed dynamic coarse-graining scheme, we introduce a statistical inference framework of explicit many-body conservative interaction that quantitatively recapitulates the mesoscopic structure of the underlying fluid. To further consider the dissipative and fluctuation forces, we design a novel algorithm that parameterizes these forces. By utilizing this algorithm, we derive pairwise decomposable friction kernels under both non-Markovian and Markovian limits where both short- and long-time features of the coarse-grained dynamics are reproduced. Finally, through these new developments, the many-body dissipative particle dynamics type of equations of motion are successfully derived. The methodologies developed in this work thus open a new avenue for the construction of direct bottom-up mesoscopic models that naturally bridge the meso- and macroscopic physics.
Collapse
Affiliation(s)
- Yining Han
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
28
|
Lake PT, Mattson MA, McCullagh M. Implicit Solvation Using the Superposition Approximation (IS-SPA): Extension to Peptides in a Polar Solvent. J Chem Theory Comput 2021; 17:703-713. [PMID: 33428425 DOI: 10.1021/acs.jctc.0c01094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient, accurate, and adaptable implicit solvent models remain a significant challenge in the field of molecular simulation. A recent implicit solvent model, IS-SPA, based on approximating the mean solvent force using the superposition approximation, provides a platform to achieve these goals. IS-SPA was originally developed to handle nonpolar solutes in a polar solvent and did not accurately capture polar solvation. Here, we demonstrate that IS-SPA can accurately capture polar solvation by incorporating solvent orientation and accounting for the contributions from long ranged electrostatics. Solvent orientation is approximated as that of an ideal dipole aligned in a mean electrostatic field and an analytic form of the long ranged electrostatics is derived. Parameters for the model are calculated from explicit solvent simulations of an isolated atom or molecule and include atom-based solvent densities, mean electric field functions, radially symmetric averaged Lennard-Jones forces, and multipoles of the explicit solvent model. Using these parameters, IS-SPA accounts for asymmetry of charge solvation and reproduces the explicit solvent potential of mean force of dimerization of two oppositely charged Lennard-Jones spheres in chloroform with high fidelity. Additionally, the model more accurately captures the effect of explicit solvent on the monomer and dimer configurations of alanine dipeptide in chloroform than a generalized Born or constant density dielectric model. The current version of the algorithm is expected to outperform explicit solvent simulations for aggregation of small peptides at concentrations below 150 mM, well above the typical experimental concentrations for these materials.
Collapse
Affiliation(s)
- Peter T Lake
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078-1010, United States
| | - Max A Mattson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078-1010, United States
| |
Collapse
|
29
|
Jin J, Han Y, Pak AJ, Voth GA. A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). I. General theory and model. J Chem Phys 2021; 154:044104. [PMID: 33514116 PMCID: PMC7826168 DOI: 10.1063/5.0026651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Water is undoubtedly one of the most important molecules for a variety of chemical and physical systems, and constructing precise yet effective coarse-grained (CG) water models has been a high priority for computer simulations. To recapitulate important local correlations in the CG water model, explicit higher-order interactions are often included. However, the advantages of coarse-graining may then be offset by the larger computational cost in the model parameterization and simulation execution. To leverage both the computational efficiency of the CG simulation and the inclusion of higher-order interactions, we propose a new statistical mechanical theory that effectively projects many-body interactions onto pairwise basis sets. The many-body projection theory presented in this work shares similar physics from liquid state theory, providing an efficient approach to account for higher-order interactions within the reduced model. We apply this theory to project the widely used Stillinger-Weber three-body interaction onto a pairwise (two-body) interaction for water. Based on the projected interaction with the correct long-range behavior, we denote the new CG water model as the Bottom-Up Many-Body Projected Water (BUMPer) model, where the resultant CG interaction corresponds to a prior model, the iteratively force-matched model. Unlike other pairwise CG models, BUMPer provides high-fidelity recapitulation of pair correlation functions and three-body distributions, as well as N-body correlation functions. BUMPer extensively improves upon the existing bottom-up CG water models by extending the accuracy and applicability of such models while maintaining a reduced computational cost.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yining Han
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander J. Pak
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
30
|
DeLyser M, Noid WG. Bottom-up coarse-grained models for external fields and interfaces. J Chem Phys 2020; 153:224103. [PMID: 33317310 DOI: 10.1063/5.0030103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bottom-up coarse-grained (CG) models accurately describe the structure of homogeneous systems but sometimes provide limited transferability and a poor description of thermodynamic properties. Consequently, inhomogeneous systems present a severe challenge for bottom-up models. In this work, we examine bottom-up CG models for interfaces and inhomogeneous systems. We first analyze the effect of external fields upon the many-body potential of mean force. We also demonstrate that the multiscale CG (MS-CG) variational principle for modeling the external field corresponds to a generalization of the first Yvon-Born-Green equation. This provides an important connection with liquid state theory, as well as physical insight into the structure of interfaces and the resulting MS-CG models. We then develop and assess MS-CG models for a film of liquid methanol that is adsorbed on an attractive wall and in coexistence with its vapor phase. While pair-additive potentials provide unsatisfactory accuracy and transferability, the inclusion of local-density (LD) potentials dramatically improves the accuracy and transferability of the MS-CG model. The MS-CG model with LD potentials quite accurately describes the wall-liquid interface, the bulk liquid density, and the liquid-vapor interface while simultaneously providing a much improved description of the vapor phase. This model also provides an excellent description of the pair structure and pressure-density equation of state for the bulk liquid. Thus, LD potentials hold considerable promise for transferable bottom-up models that accurately describe the structure and thermodynamic properties of both bulk and interfacial systems.
Collapse
Affiliation(s)
- Michael DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
31
|
Rudzinski JF, Bereau T. Coarse-grained conformational surface hopping: Methodology and transferability. J Chem Phys 2020; 153:214110. [DOI: 10.1063/5.0031249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Van ’t Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
32
|
Kapoor U, Kulshreshtha A, Jayaraman A. Development of Coarse-Grained Models for Poly(4-vinylphenol) and Poly(2-vinylpyridine): Polymer Chemistries with Hydrogen Bonding. Polymers (Basel) 2020; 12:E2764. [PMID: 33238611 PMCID: PMC7709027 DOI: 10.3390/polym12112764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
In this paper, we identify the modifications needed in a recently developed generic coarse-grained (CG) model that captured directional interactions in polymers to specifically represent two exemplary hydrogen bonding polymer chemistries-poly(4-vinylphenol) and poly(2-vinylpyridine). We use atomistically observed monomer-level structures (e.g., bond, angle and torsion distribution) and chain structures (e.g., end-to-end distance distribution and persistence length) of poly(4-vinylphenol) and poly(2-vinylpyridine) in an explicitly represented good solvent (tetrahydrofuran) to identify the appropriate modifications in the generic CG model in implicit solvent. For both chemistries, the modified CG model is developed based on atomistic simulations of a single 24-mer chain. This modified CG model is then used to simulate longer (36-mer) and shorter (18-mer and 12-mer) chain lengths and compared against the corresponding atomistic simulation results. We find that with one to two simple modifications (e.g., incorporating intra-chain attraction, torsional constraint) to the generic CG model, we are able to reproduce atomistically observed bond, angle and torsion distributions, persistence length, and end-to-end distance distribution for chain lengths ranging from 12 to 36 monomers. We also show that this modified CG model, meant to reproduce atomistic structure, does not reproduce atomistically observed chain relaxation and hydrogen bond dynamics, as expected. Simulations with the modified CG model have significantly faster chain relaxation than atomistic simulations and slower decorrelation of formed hydrogen bonds than in atomistic simulations, with no apparent dependence on chain length.
Collapse
Affiliation(s)
- Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA; (U.K.); (A.K.)
| | - Arjita Kulshreshtha
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA; (U.K.); (A.K.)
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA; (U.K.); (A.K.)
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
33
|
Potter TD, Walker M, Wilson MR. Self-assembly and mesophase formation in a non-ionic chromonic liquid crystal: insights from bottom-up and top-down coarse-grained simulation models. SOFT MATTER 2020; 16:9488-9498. [PMID: 32955531 DOI: 10.1039/d0sm01157f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
New coarse-grained models are introduced for a non-ionic chromonic molecule, TP6EO2M, in aqueous solution. The multiscale coarse-graining (MS-CG) approach is used, in the form of hybrid force matching (HFM), to produce a bottom-up CG model that demonstrates self-assembly in water and the formation of a chromonic stack. However, the high strength of binding in stacks is found to limit the transferability of the HFM model at higher concentrations. The MARTINI 3 framework is also tested. Here, a top-down CG model is produced which shows self-assembly in solution in good agreement with atomistic studies and transfers well to higher concentrations, allowing the full phase diagram of TP6EO2M to be studied. At high concentration, both self-assembly of molecules into chromonic stacks and self-organisation of stacks into mesophases occurs, with the formation of nematic (N) and hexagonal (M) chromonic phases. This CG-framework is suggested as a suitable way of studying a range of chromonic-type drug and dye molecules that exhibit complex self-assembly and solubility behaviour in solution.
Collapse
Affiliation(s)
- Thomas D Potter
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| | - Martin Walker
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| | - Mark R Wilson
- Department of Chemistry, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
34
|
Shen K, Sherck N, Nguyen M, Yoo B, Köhler S, Speros J, Delaney KT, Fredrickson GH, Shell MS. Learning composition-transferable coarse-grained models: Designing external potential ensembles to maximize thermodynamic information. J Chem Phys 2020; 153:154116. [DOI: 10.1063/5.0022808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kevin Shen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - My Nguyen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Brian Yoo
- BASF Corporation, Tarrytown, New York 10591, USA
| | | | - Joshua Speros
- California Research Alliance (CARA) by BASF, Berkeley, California 94720, USA
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
- Department of Materials Engineering, University of California, Santa Barbara, California 93106, USA
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
35
|
Jin J, Yu A, Voth GA. Temperature and Phase Transferable Bottom-up Coarse-Grained Models. J Chem Theory Comput 2020; 16:6823-6842. [PMID: 32975948 DOI: 10.1021/acs.jctc.0c00832] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite the high fidelity of bottom-up coarse-grained (CG) approaches to recapitulate the structural correlations in atomistic simulations, the general use of bottom-up CG methods is limited because of the nontransferable nature of these CG models under different thermodynamic conditions. Because bottom-up CG potentials usually correspond to configuration-dependent free energies of the system, recent studies have focused on adjusting enthalpic or entropic contributions to account for issues with transferability. However, these approaches can require a manual adjustment of the CG interaction a priori and are usually limited to constant volume ensembles. To overcome these limitations, we construct temperature and phase transferable CG models under constant pressure by developing the ultra-coarse-graining (UCG) methodology in the mean-field limit. In the mean-field ansatz, an embedded semi-global order parameter recapitulates global changes to the system by automatically adjusting the effective CG interactions, thus bridging free energy decompositions with UCG theory. The method presented is designed to faithfully capture structural correlations under different thermodynamic conditions, using a single UCG model. Specifically, we test the applicability of the developed theory in three distinct cases: (1) different temperatures at constant pressure in liquids, (2) different temperatures across thermodynamic phases, and (3) liquid/vapor interfaces. We demonstrate that the systematic construction of both temperature and phase transferable bottom-up CG models is possible using this generalized UCG theory. Based on our findings, this approach significantly extends the transferability and applicability of the bottom-up CG theory and method.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Alvin Yu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
36
|
Gao P, Yang X, Tartakovsky AM. Learning Coarse-Grained Potentials for Binary Fluids. J Chem Inf Model 2020; 60:3731-3745. [PMID: 32668158 DOI: 10.1021/acs.jcim.0c00337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For a multiple-fluid system, CG models capable of accurately predicting the interfacial properties as a function of curvature are still lacking. In this work, we propose a new probabilistic machine learning (ML) model for learning CG potentials for binary fluids. The water-hexane mixture is selected as a typical immiscible binary liquid-liquid system. We develop a new CG force field (FF) using the Shinoda-DeVane-Klein (SDK) FF framework and compute parameters in this CG FF using the proposed probabilistic ML method. It is shown that a standard response-surface approach does not provide a unique set of parameters, as it results in a loss function with multiple shallow minima. To address this challenge, we develop a probabilistic ML approach where we compute the probability density function (PDF) of parameters that minimize the loss function. The PDF has a well-defined peak corresponding to a unique set of parameters in the CG FF that reproduces the desired properties of a liquid-liquid interface. We compare the performance of the new CG FF with several existing FFs for the water-hexane mixture, including two atomistic and three CG FFs with respect to modeling the interface structure and thermodynamic properties. It is demonstrated that the new FF significantly improves the CG model prediction of both the interfacial tension and structure for the water-hexane mixture.
Collapse
Affiliation(s)
- Peiyuan Gao
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiu Yang
- Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Alexandre M Tartakovsky
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
37
|
Vanya P, Elliott JA. Definitions of local density in density-dependent potentials for mixtures. Phys Rev E 2020; 102:013312. [PMID: 32794930 DOI: 10.1103/physreve.102.013312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 07/02/2020] [Indexed: 11/07/2022]
Abstract
Density-dependent potentials are frequently used in materials simulations because of their approximate description of many-body effects at minimal computational cost. However, in order to apply such models to multicomponent systems, an appropriate definition of total local particle density is required. Here, we discuss two definitions of local density in the context of many-body dissipative particle dynamics. We show that only a potential which combines local densities from all particle types in its argument gives physically meaningful results for all composition ratios. Drawing on the ideas from metal potentials, we redefine local density such that it can accommodate different intertype interactions despite the constraint to keep the main interaction parameter constant, known as Warren's no-go theorem, and generalize the many-body potential to heterogeneous systems. We then show via simulation how liquid-liquid and liquid-solid coexistence can arise just by tuning the interaction parameters.
Collapse
Affiliation(s)
- Peter Vanya
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom.,Value for Money Unit, Ministry of Finance of the Slovak Republic, Štefanovičova 5, 817 82 Bratislava, Slovakia
| | - James A Elliott
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
38
|
Shahidi N, Chazirakis A, Harmandaris V, Doxastakis M. Coarse-graining of polyisoprene melts using inverse Monte Carlo and local density potentials. J Chem Phys 2020; 152:124902. [PMID: 32241142 DOI: 10.1063/1.5143245] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bottom-up coarse-graining of polymers is commonly performed by matching structural order parameters such as distribution of bond lengths, bending and dihedral angles, and pair distribution functions. In this study, we introduce the distribution of nearest-neighbors as an additional order parameter in the concept of local density potentials. We describe how the inverse-Monte Carlo method provides a framework for forcefield development that is capable of overcoming challenges associated with the parameterization of interaction terms in polymer systems. The technique is applied on polyisoprene melts as a prototype system. We demonstrate that while different forcefields can be developed that perform equally in terms of matching target distributions, the inclusion of nearest-neighbors provides a straightforward route to match both thermodynamic and conformational properties. We find that several temperature state points can also be addressed, provided that the forcefield is refined accordingly. Finally, we examine both the single-particle and the collective dynamics of the coarse-grain models, demonstrating that all forcefields present a similar acceleration relative to the atomistic systems.
Collapse
Affiliation(s)
- Nobahar Shahidi
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Antonis Chazirakis
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR-71110, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, Heraklion GR-71110, Greece
| | - Manolis Doxastakis
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
39
|
Li C, Qin Z, Han W. Bottom-up derived flexible water model with dipole and quadrupole moments for coarse-grained molecular simulations. Phys Chem Chem Phys 2020; 22:27394-27412. [DOI: 10.1039/d0cp04185h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bottom-up CG water model is developed to capture the electrostatic multipoles, structural correlation and thermodynamics of water.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Zhongyuan Qin
- State Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| | - Wei Han
- State Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen
- China
| |
Collapse
|
40
|
Abstract
Low resolution coarse-grained (CG) models are widely adopted for investigating phenomena that cannot be effectively simulated with all-atom (AA) models. Since the development of the many-body dissipative particle dynamics method, CG models have increasingly supplemented conventional pair potentials with one-body potentials of the local density (LD) around each site. These LD potentials appear to significantly extend the transferability of CG models, while also enabling more accurate descriptions of thermodynamic properties, interfacial phenomena, and many-body correlations. In this work, we systematically examine the properties of LD potentials. We first derive and numerically demonstrate a nontrivial transformation of pair and LD potentials that leaves the total forces and equilibrium distribution invariant. Consequently, the pair and LD potentials determined via bottom-up methods are not unique. We then investigate the sensitivity of CG models for glycerol to the weighting function employed for defining the local density. We employ the multiscale coarse-graining (MS-CG) method to simultaneously parameterize both pair and LD potentials. When employing a short-ranged Lucy function that defines the local density from the first solvation shell, the MS-CG model accurately reproduces the pair structure, pressure-density equation of state, and liquid-vapor interfacial profile of the AA model. The accuracy of the model generally decreases as the range of the Lucy function increases further. The MS-CG model provides similar accuracy when a smoothed Heaviside function is employed to define the local density from the first solvation shell. However, the model performs less well when this function acts on either longer or shorter length scales.
Collapse
Affiliation(s)
- Michael R DeLyser
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
41
|
Lebold KM, Noid WG. Dual-potential approach for coarse-grained implicit solvent models with accurate, internally consistent energetics and predictive transferability. J Chem Phys 2019; 151:164113. [PMID: 31675902 DOI: 10.1063/1.5125246] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The dual-potential approach promises coarse-grained (CG) models that accurately reproduce both structural and energetic properties, while simultaneously providing predictive estimates for the temperature-dependence of the effective CG potentials. In this work, we examine the dual-potential approach for implicit solvent CG models that reflect large entropic effects from the eliminated solvent. Specifically, we construct implicit solvent models at various resolutions, R, by retaining a fraction 0.10 ≤ R ≤ 0.95 of the molecules from a simple fluid of Lennard-Jones spheres. We consider the dual-potential approach in both the constant volume and constant pressure ensembles across a relatively wide range of temperatures. We approximate the many-body potential of mean force for the remaining solutes with pair and volume potentials, which we determine via multiscale coarse-graining and self-consistent pressure-matching, respectively. Interestingly, with increasing temperature, the pair potentials appear increasingly attractive, while the volume potentials become increasingly repulsive. The dual-potential approach not only reproduces the atomic energetics but also quite accurately predicts this temperature-dependence. We also derive an exact relationship between the thermodynamic specific heat of an atomic model and the energetic fluctuations that are observable at the CG resolution. With this generalized fluctuation relationship, the approximate CG models quite accurately reproduce the thermodynamic specific heat of the underlying atomic model.
Collapse
Affiliation(s)
- Kathryn M Lebold
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W G Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
42
|
Jin J, Pak AJ, Voth GA. Understanding Missing Entropy in Coarse-Grained Systems: Addressing Issues of Representability and Transferability. J Phys Chem Lett 2019; 10:4549-4557. [PMID: 31319036 PMCID: PMC6782054 DOI: 10.1021/acs.jpclett.9b01228] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Coarse-grained (CG) models facilitate efficient simulation of complex systems by integrating out the atomic, or fine-grained (FG), degrees of freedom. Systematically derived CG models from FG simulations often attempt to approximate the CG potential of mean force (PMF), an inherently multidimensional and many-body quantity, using additive pairwise contributions. However, they currently lack fundamental principles that enable their extensible use across different thermodynamic state points, i.e., transferability. In this work, we investigate the explicit energy-entropy decomposition of the CG PMF as a means to construct transferable CG models. In particular, despite its high-dimensional nature, we find for liquid systems that the entropic component to the CG PMF can similarly be represented using additive pairwise contributions, which we show is highly coupled to the CG configurational entropy. This approach formally connects the missing entropy that is lost due to the CG representation, i.e., translational, rotational, and vibrational modes associated with the missing degrees of freedom, to the CG entropy. By design, the present framework imparts transferable CG interactions across different temperatures due to the explicit definition of an additive entropic contribution. Furthermore, we demonstrate that transferability across composition state points, such as between bulk liquids and their mixtures, is also achieved by designing combining rules to approximate cross-interactions from bulk CG PMFs. Using the predicted CG model for liquid mixtures, structural correlations of the fitted CG model were found to corroborate a high-fidelity combining rule. Our findings elucidate the physical nature and compact representation of CG entropy and suggest a new approach for overcoming the transferability problem. We expect that this approach will further extend the current view of CG modeling into predictive multiscale modeling.
Collapse
|
43
|
Rosenberger D, van der Vegt NFA. Relative entropy indicates an ideal concentration for structure-based coarse graining of binary mixtures. Phys Rev E 2019; 99:053308. [PMID: 31212527 DOI: 10.1103/physreve.99.053308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 06/09/2023]
Abstract
Many methodological approaches have been proposed to improve systematic or bottom-up coarse-graining techniques to enhance the representability and transferability of the derived interaction potentials. Transferability describes the ability of a coarse-grained (CG) model to be predictive, i.e., to describe a system at state points different from those chosen for parametrization. Whereas the representability characterizes the accuracy of a CG model to reproduce target properties of the underlying reference or fine-grained model at a given state point. In this article, we shift the focus away from methodological aspects and rather raise the question whether we can overcome the disadvantages of a given method in terms of representability and transferability by systematically selecting the state point at which the CG model gets parametrized. We answer this question by applying the inverse Monte Carlo (IMC) approach-a structure-based coarse-graining method-to derive effective interactions for binary mixtures of simple Lennard-Jones (LJ) particles, which are different in size. For such simple systems we indeed can identify a concentration where the derived potentials show the best performance in terms of structural representability and transferability. This specific concentration is identified by computing the relative entropy which quantifies the information loss between different IMC models and the reference LJ model at varying mixture compositions. Further, we show that an IMC model for mixtures of n-hexane and n-perfluorohexane shows the same trend in transferability as the IMC models for the LJ system. All derived models are more transferable in the direction of increasing concentration of the larger-sized compound.
Collapse
Affiliation(s)
- David Rosenberger
- Eduard Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, 64287, Germany
| | - Nico F A van der Vegt
- Eduard Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Darmstadt, 64287, Germany
| |
Collapse
|
44
|
Rosenberger D, Sanyal T, Shell MS, van der Vegt NFA. Transferability of Local Density-Assisted Implicit Solvation Models for Homogeneous Fluid Mixtures. J Chem Theory Comput 2019; 15:2881-2895. [PMID: 30995034 DOI: 10.1021/acs.jctc.8b01170] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The application of bottom-up coarse grained (CG) models to study the equilibrium mixing behavior of liquids is rather challenging, since these models can be significantly influenced by the density or the concentration of the state chosen during parametrization. This dependency leads to low transferability in density/concentration space and has been one of the major limitations in bottom-up coarse graining. Recent approaches proposed to tackle this shortcoming range from the addition of thermodynamic constraints, to an extended ensemble parametrization, to the addition of supplementary terms to the system's Hamiltonian. To study fluid phase equilibria with bottom-up CG models, the application of local density (LD) potentials appears to be a promising approach, as shown in previous work by Sanyal and Shell [T. Sanyal, M. S. Shell, J. Phys. Chem. B, 2018, 122, 5678]. Here, we want to further explore this method and test its ability to model a system which contains structural inhomogeneities only on the molecular scale, namely, solutions of methanol and water. We find that a water-water LD potential improves the transferability of an implicit-methanol CG model toward high water concentration. Conversely, a methanol-methanol LD potential does not significantly improve the transferability of an implicit-water CG model toward high methanol concentration. These differences appear due to the presence of cooperative interactions in water at high concentrations that the LD potentials can capture. In addition, we compare two different approaches to derive our CG models, namely, relative entropy optimization and the Inverse Monte Carlo method, and formally demonstrate under which analytical and numerical assumptions these two methods yield equivalent results.
Collapse
Affiliation(s)
- David Rosenberger
- Eduard Zintl Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Darmstadt , Germany
| | - Tanmoy Sanyal
- Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - M Scott Shell
- Department of Chemical Engineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Nico F A van der Vegt
- Eduard Zintl Institut für Anorganische und Physikalische Chemie , Technische Universität Darmstadt , Darmstadt , Germany
| |
Collapse
|
45
|
Kempfer K, Devémy J, Dequidt A, Couty M, Malfreyt P. Development of Coarse-Grained Models for Polymers by Trajectory Matching. ACS OMEGA 2019; 4:5955-5967. [PMID: 31459746 PMCID: PMC6648800 DOI: 10.1021/acsomega.9b00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/18/2019] [Indexed: 05/21/2023]
Abstract
Coarse-grained (CG) models allow for simulating the necessary time and length scales relevant to polymers. However, developing realistic force fields at the CG level is still a challenge because there is no guarantee that the CG model reproduces all the properties of the atomistic model. A recent promising method was proposed for small molecules using statistical trajectory matching. Here, we extend this method to the case of polymeric systems. As the quality of the final model crucially depends on the model design, we study and discuss the effect of the modeling choices on the structure and dynamics of bulk polymers before a quantitative comparison is made between CG methods on different properties and polymers.
Collapse
Affiliation(s)
- Kévin Kempfer
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- Manufacture
Française des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Julien Devémy
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Alain Dequidt
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- E-mail: (A.D.)
| | - Marc Couty
- Manufacture
Française des Pneumatiques Michelin, 23, Place des Carmes, 63040 Clermont-Ferrand, France
| | - Patrice Malfreyt
- Université
Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
- E-mail: (P.M.)
| |
Collapse
|
46
|
Pak A, Dannenhoffer-Lafage T, Madsen JJ, Voth GA. Systematic Coarse-Grained Lipid Force Fields with Semiexplicit Solvation via Virtual Sites. J Chem Theory Comput 2019; 15:2087-2100. [PMID: 30702887 PMCID: PMC6416712 DOI: 10.1021/acs.jctc.8b01033] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 12/15/2022]
Abstract
Despite the central role of lipids in many biophysical functions, the molecular mechanisms that dictate macroscopic lipid behavior remain elusive to both experimental and computational approaches. As such, there has been much interest in the development of low-resolution, implicit-solvent coarse-grained (CG) models to dynamically simulate biologically relevant spatiotemporal scales with molecular fidelity. However, in the absence of solvent, a key challenge for CG models is to faithfully emulate solvent-mediated forces, which include both hydrophilic and hydrophobic interactions that drive lipid aggregation and self-assembly. In this work, we provide a new methodological framework to incorporate semiexplicit solvent effects through the use of virtual CG particles, which represent structural features of the solvent-lipid interface. To do so, we leverage two systematic coarse-graining approaches, multiscale coarse-graining (MS-CG) and relative entropy minimization (REM), in a hybrid fashion to construct our virtual-site CG (VCG) models. As a proof-of-concept, we focus our efforts on two lipid species, 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC), which adopt a liquid-disordered and gel phase, respectively, at room temperature. Through our analysis, we also present, to our knowledge, the first direct comparison between the MS-CG and REM methods for a complex biomolecule and highlight each of their strengths and weaknesses. We further demonstrate that VCG models recapitulate the rich biophysics of lipids, which enable self-assembly, morphological diversity, and multiple phases. Our findings suggest that the VCG framework is a powerful approach for investigation into macromolecular biophysics.
Collapse
Affiliation(s)
- Alexander
J. Pak
- Department of Chemistry, The
University of Chicago, Chicago, Illinois 60637, United States
| | | | - Jesper J. Madsen
- Department of Chemistry, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
47
|
Deichmann G, van der Vegt NFA. Conditional Reversible Work Coarse-Grained Models with Explicit Electrostatics—An Application to Butylmethylimidazolium Ionic Liquids. J Chem Theory Comput 2019; 15:1187-1198. [DOI: 10.1021/acs.jctc.8b00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gregor Deichmann
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
48
|
Lebold KM, Noid WG. Systematic study of temperature and density variations in effective potentials for coarse-grained models of molecular liquids. J Chem Phys 2019; 150:014104. [DOI: 10.1063/1.5050509] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Kathryn M. Lebold
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| | - W. G. Noid
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
49
|
Potter TD, Tasche J, Wilson MR. Assessing the transferability of common top-down and bottom-up coarse-grained molecular models for molecular mixtures. Phys Chem Chem Phys 2019; 21:1912-1927. [DOI: 10.1039/c8cp05889j] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assessing the performance of top-down and bottom-up coarse-graining approaches.
Collapse
Affiliation(s)
| | - Jos Tasche
- Department of Chemistry
- Durham University
- Lower Mountjoy
- Durham
- UK
| | - Mark R. Wilson
- Department of Chemistry
- Durham University
- Lower Mountjoy
- Durham
- UK
| |
Collapse
|
50
|
Bereau T, Rudzinski JF. Accurate Structure-Based Coarse Graining Leads to Consistent Barrier-Crossing Dynamics. PHYSICAL REVIEW LETTERS 2018; 121:256002. [PMID: 30608819 DOI: 10.1103/physrevlett.121.256002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Structure-based coarse graining of molecular systems offers a systematic route to reproduce the many-body potential of mean force. Unfortunately, common strategies are inherently limited by the molecular mechanics force field employed. Here, we extend the concept of multisurface dynamics, initially developed to describe electronic transitions in chemical reactions, to accurately sample the conformational ensemble of a classical system in equilibrium. In analogy to describing different electronic configurations, a surface-hopping scheme couples distinct conformational basins beyond the additivity of the Hamiltonian. The incorporation of more surfaces leads systematically toward improved cross-correlations. The resulting models naturally achieve consistent long-time dynamics for systems governed by barrier-crossing events.
Collapse
Affiliation(s)
- Tristan Bereau
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | |
Collapse
|