1
|
Allard C, Alvarez L, Bantignies JL, Bendiab N, Cambré S, Campidelli S, Fagan JA, Flahaut E, Flavel B, Fossard F, Gaufrès E, Heeg S, Lauret JS, Loiseau A, Marceau JB, Martel R, Marty L, Pichler T, Voisin C, Reich S, Setaro A, Shi L, Wenseleers W. Advanced 1D heterostructures based on nanotube templates and molecules. Chem Soc Rev 2024; 53:8457-8512. [PMID: 39036944 DOI: 10.1039/d3cs00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies. NTs offer cylindrical, crystalline structures with high aspect ratios, capable of hosting molecules both externally and internally (Mol@NT). Furthermore, NTs possess a wide array of available diameters, providing tunability for tailored assembly. This review underscores recent breakthroughs in the field of Mol@NT. The first part focuses on the diverse panorama of structural properties in Mol@NT synthesized in the last decade. The advances in understanding encapsulation, adsorption, and ordering mechanisms are detailed. In a second part, the review highlights the physical interactions and photophysics properties of Mol@NT obtained by the confinement of molecules and nanotubes in the van der Waals distance regime. The last part of the review describes potential applicative fields of these 1D heterostructures, providing specific examples in photovoltaics, luminescent materials, and bio-imaging. A conclusion gathers current challenges and perspectives of the field to foster discussion in related communities.
Collapse
Affiliation(s)
| | - Laurent Alvarez
- Laboratoire Charles Coulomb, CNRS-Université de Montpellier, France
| | | | | | | | | | | | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, cedex 9, France
| | | | - Frédéric Fossard
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Etienne Gaufrès
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | - Jean-Sebastien Lauret
- LUMIN, Université Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France
| | - Annick Loiseau
- Laboratoire d'Étude des Microstructures, CNRS-Onera, Chatillon, France
| | - Jean-Baptiste Marceau
- Laboratoire Photonique, Numérique et Nanosciences, CNRS-Université de Bordeaux-IOGS, Talence, France.
| | | | | | | | | | | | - Antonio Setaro
- Free University of Berlin, Germany
- Faculty of Engineering and Informatics, Pegaso University, Naples, Italy
| | - Lei Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Nanotechnology and Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | |
Collapse
|
2
|
Cortés-Arriagada D, Miranda-Rojas S, Camarada MB, Ortega DE, Alarcón-Palacio VB. The interaction mechanism of polystyrene microplastics with pharmaceuticals and personal care products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160632. [PMID: 36460102 DOI: 10.1016/j.scitotenv.2022.160632] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) have been detected in the hydrosphere, with hazardous implications in transporting coexisting water pollutants. Our knowledge about the interaction mechanisms that MPs establish with organic pollutants are still growing, which is essential to understand the adsorption properties of MPs and their relative stability with adsorbates. Here, we used classical (force field methods) and ab-initio (density functional theory) computational chemistry tools to characterize the interaction mechanisms between Polystyrene-MPs (PS-MPs) and pharmaceuticals/personal care products (PPCPs). Adsorption conformations and energies, thermochemistry, binding, and energy decomposition analyses were performed to obtain the quantitative mechanistic information. Our results show that PS-MPs have permanent dipoles, increasing the interaction with neutral PPCPs while repelling the charged pollutants; in all cases, a stable physisorption takes place. Moreover, PS-MPs increase their solubility upon pollutant adsorption due to an increase in the dipole moment, increasing their co-transport ability in aqueous environments. The stability of the PS-MPs/PPCPs complexes is further confirmed by thermochemical and molecular dynamics trajectory analysis as a function of temperature and pressure. The interaction mechanism of high pKa pollutants (pKa > 5) is due to a balanced contribution of electrostatic and dispersion forces, while the adsorption of low pKa pollutants (pKa < 5) maximizes the electrostatic forces, and steric repulsion effects explain their relative lower adsorption stability. In this regard, several pairwise intermolecular interactions are recognized as a source of stabilization in the PS-MPs/PPCPs binding: hydrogen bonding, π-π, OH⋯π, and CH⋯π, CCl⋯CH and CH⋯CH interactions. The ionic strength in solution slightly affects the adsorption stability of neutral PPCPs, while the sorption of charged pollutants is enhanced. This mechanistic information provides quantitative data for a better understanding of the interactions between organic pollutants and MPs, serving as valuable information for sorption/kinetic studies.
Collapse
Affiliation(s)
- Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago, Chile
| | - María Belén Camarada
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela E Ortega
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, General Gana 1702, Santiago, 8370854, Chile
| | - Victoria B Alarcón-Palacio
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
3
|
Liu H, Meng Y, Li J, Wang X, Zhang T. Mechanistic insights into UV photolysis of carbamazepine and caffeine: Active species, reaction sites, and toxicity evolution. CHEMOSPHERE 2022; 308:136418. [PMID: 36126737 DOI: 10.1016/j.chemosphere.2022.136418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The pseudo-persistence of pharmaceutical and personal care products (PPCPs)in the aqueous environment may pose potential risks to human health and ecosystems. The UV disinfection in wastewater treatment plants is one of the essential processes before PPCPs enter the water environment, so it is crucial to elucidate the photolytic behavior and mechanism of PPCPs under UV radiation. In this work, carbamazepine (CBZ) and caffeine (CAF) were selected as typical pollutants to investigate the effect of water matrixes, humic acid, inorganic ions, and pH on the UV radiation performance. Hydroxyl radical (•OH) and singlet oxygen (1O2) were identified by quenching experiments and electron paramagnetic resonance (EPR) spectra as playing a dominant role in the degradation process. UPLC-TOF/MS was conducted to identify 13 and 14 possible intermediates of CBZ and CAF, respectively. Moreover, combining density functional theory (DFT) calculations (Frontier Molecular Orbital and Fukui index), hydroxylation, oxidation, and ring cleavage were proposed as the main degradation pathways of the contaminants, which occurred first at the C(7C), N(17 N) and O(18O) sites of CBZ and at the C(9C) site of CAF. The bio-acute toxicity experiment and the Ecological Structure-Activity Relationships (ECOSAR) program were performed to analyze and predict the toxicity of the intermediates of CBZ and CAF under UV radiation, respectively. The results showed that the acute toxicity of both solutions increased after UV radiation and followed with the combined toxicity. This work has great scientific value and practical environmental significance for evaluating the UV disinfection process and managing PPCPs in the aqueous environment.
Collapse
Affiliation(s)
- Hang Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Meng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Interactions of boron nitride nanosheet with amino acids of differential polarity. Sci Rep 2022; 12:11156. [PMID: 35778438 PMCID: PMC9249799 DOI: 10.1038/s41598-022-13738-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Free amino acids represent a category of different biomolecules in the blood plasma, which bond together to make up larger organic molecules such as peptides and proteins. Their interactions with biocompatible nanoparticles are especially important for plasma-related biomedical applications. Among the various nanomaterials, the applications of carbon and boron nitride-based nanotubes/nanosheets have shown a huge increase in recent years. The effect of molecular polarity on the interaction between a boron nitride nanosheet (BNNS) and amino acids is investigated with quantum mechanical calculations by density functional theory (DFT), classical MD simulations, and well-tempered metadynamics simulations. Four representative amino acids, namely, alanine (Ala), a nonpolar amino acid, and aspartic acid (Asp), lysine (Lys) and serine (Ser), three polar amino acids are considered for their interactions with BNNS. In DFT calculations, the values of the adsorption energies for Lys-BNNS and Ser-BNNS complexes are - 48.32 and - 32.89 kJ/mol, respectively, which are more stable than the other cases. Besides, the adsorption energy calculated confirms the exergonic reactions for all investigated systems; it implied that the interaction is favorable electronically. The MD results show that the LYS molecules have a higher attraction toward BNNS because of its alkane tail in its side chain, and the ASP revealed the repulsion force originating from its COO- group. All the results are confirmed by free energy analyzes in which the LYS showed the highest adsorption free energy at a relatively farther distance than other complexes. In fact, our results revealed the contribution of functional groups and backbone of the amino acids in the adsorption or repulsion features of the studied systems.
Collapse
|
5
|
Talla JA, Al-Khaza’leh K, Omar N. Tuning the Electronic Properties of Carbon-Doped Double-Walled Boron Nitride Nanotubes: Density Functional Theory. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622070178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Turhan EA, Pazarçeviren AE, Evis Z, Tezcaner A. Properties and applications of boron nitride nanotubes. NANOTECHNOLOGY 2022; 33:242001. [PMID: 35203072 DOI: 10.1088/1361-6528/ac5839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Nanomaterials have received increasing attention due to their controllable physical and chemical properties and their improved performance over their bulk structures during the last years. Carbon nanostructures are one of the most widely searched materials for use in different applications ranging from electronic to biomedical because of their exceptional physical and chemical properties. However, BN nanostructures surpassed the attention of the carbon-based nanostructure because of their enhanced thermal and chemical stabilities in addition to structural similarity with the carbon nanomaterials. Among these nanostructures, one dimensional-BN nanostructures are on the verge of development as new materials to fulfill some necessities for different application areas based on their excellent and unique properties including their tunable surface and bandgap, electronic, optical, mechanical, thermal, and chemical stability. Synthesis of high-quality boron nitride nanotubes (BNNTs) in large quantities with novel techniques provided greater access, and increased their potential use in nanocomposites, biomedical fields, and nanodevices as well as hydrogen uptake applications. In this review, properties and applications of one-dimensional BN (1D) nanotubes, nanofibers, and nanorods in hydrogen uptake, biomedical field, and nanodevices are discussed in depth. Additionally, research on native and modified forms of BNNTs and also their composites with different materials to further improve electronic, optical, structural, mechanical, chemical, and biological properties are also reviewed. BNNTs find many applications in different areas, however, they still need to be further studied for improving the synthesis methods and finding new possible future applications.
Collapse
Affiliation(s)
- Emine Ayşe Turhan
- Department of Material Science and Engineering, Koç University, İstanbul, Turkey
| | | | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| |
Collapse
|
7
|
Samira Kaghazkonani, Sadegh Afshari. Sensing C3–C10 Straight Chain Aldehydes Biomarker Gas Molecules: Density Functional Theory. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s199079312106018x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
John C, Swathi RS. An anisotropic dressed pairwise potential model for the adsorption of noble gases on boron nitride sheets. Phys Chem Chem Phys 2022; 24:2554-2566. [PMID: 35024709 DOI: 10.1039/d1cp04815e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of empirical potentials with accurate parameterization is indispensable while modeling large-scale systems. Herein, we report accurate parameterization of an anisotropic dressed pairwise potential model (PPM) for probing the adsorption of noble gases, He, Ne, Ar and Kr on boron nitride sheets. For the noble gas binding on B48N48H24, we carried out a least-squares fit analysis of the dispersion and dispersionless contributions of the interaction potential separately. The transferability of the parameters for a range of molecular model systems of boron nitride is further established. The dressed PPM is then used in conjunction with a global optimization technique, namely particle swarm optimization (PSO) to assess the possibility of performing large-scale simulations with the PPM-PSO methodology. The results obtained for the adsorption of 2-5 noble gases on BN sheets establish the proof-of-concept, encouraging the pursuit of large-scale simulations using the PPM-PSO approach.
Collapse
Affiliation(s)
- Chris John
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram, India.
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram, India.
| |
Collapse
|
9
|
Marvi PK, Amjad-Iranagh S, Halladj R. Molecular Dynamics Assessment of Doxorubicin Adsorption on Surface-Modified Boron Nitride Nanotubes (BNNTs). J Phys Chem B 2021; 125:13168-13180. [PMID: 34813340 DOI: 10.1021/acs.jpcb.1c07052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Loading therapeutic agents on nanocarriers in order to protect them during drug delivery and exclusively targeting damaged tissues has gained substantial significance in biology realms in the past decade. Boron nitride nanotubes have given a new lease on designing nano delivery systems by virtue of their unique properties. The studies are still ongoing to thoroughly identify their chemical characteristics. In this study, we probed into the efficacy of boron nitride nanotubes and the impact of their surface modification by hydroxyl and amine functional groups in interaction with an anticancer drug model, i.e., doxorubicin. Defining the altered electronic properties of the nanotubes as well as the distribution of partial charges were carried out through density functional theory calculations, following the simulation of the drug loading process via molecular dynamics algorithms. The primary outcomes are inferred from systematical energies, van der Waals and electrostatic interactions, radial distribution functions, the number of hydrogen bonds, mean square displacement, diffusion coefficients, and binding free energies. Negative values of van der Waals energies imply a rapid, exothermic adsorption process whereby the contribution of these driving forces is more dominant than electrostatic ones. Ultimately, the values of overall diffusion coefficients of drugs and binding free energies, performed by the MM/PBSA approach, corroborate that the hydroxyl and amine-functionalized nanotubes reinforce the binding strength of the complexes to an approximate extent.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Sepideh Amjad-Iranagh
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Rouein Halladj
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| |
Collapse
|
10
|
Characterization of self-aggregated mitomycin C onto the boron-nitride nanotube as a drug delivery carrier: A molecular dynamics investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
García-Toral D, Báez RM, Sánchez S JI, Flores-Riveros A, Cocoletzi GH, Rivas-Silva JF. Encapsulation of Pollutant Gaseous Molecules by Adsorption on Boron Nitride Nanotubes: A Quantum Chemistry Study. ACS OMEGA 2021; 6:14824-14837. [PMID: 34151064 PMCID: PMC8209793 DOI: 10.1021/acsomega.1c00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Based on density functional theory (DFT) and the semiempirical method PM7, we analyze the encapsulation process of polluting gases and/or their adsorption on different sites, viz., on the inner wall, the outer wall, and on the boron nitride (BN) nanotube ends, with chirality (7,7) armchair. DFT calculations are performed using the Perdew-Burke-Ernzerhof (PBE) functional and the M06-2X method through the 6-31G(d) divided valence orbitals as an atomic basis. Various geometrical configurations were optimized by minimizing the total energy for all analyzed systems, including the calculation of vibrational frequencies, which were assumed to be of a nonmagnetic nature, and where the total charge was kept neutral. Results are interpreted in terms of adsorption energy and electronic force, as well as on the analysis of quantum molecular descriptors for all systems considered. The study of six molecules, namely, CCl4, CS2, CO2, CH4, C4H10, and C6H12, in gas phase is addressed. Our results show that C4H10, C6H12, and CCl4 are chemisorbed on the inner surfaces (encapsulation) and on the nanotube ends. In contrast, the other molecules CS2, CO2, and CH4 show weak interaction with the nanotube surface, leading thereby to physisorption. Our findings thus suggest that this kind of polluting gases can be transported within nanotubes by encapsulation.
Collapse
Affiliation(s)
- Dolores García-Toral
- Facultad
de Ingeniería Química, Benemérita
Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur S/N Edifico 106A C.U.
San Manuel, 72570 Puebla, Mexico
| | - Raúl Mendoza Báez
- Facultad
de Ingeniería Química, Benemérita
Universidad Autónoma de Puebla, Avenida San Claudio y 18 Sur S/N Edifico 106A C.U.
San Manuel, 72570 Puebla, Mexico
| | - Jonatan I. Sánchez S
- Instituto
de Física, Benemérita Universidad
Autónoma de Puebla, Avenida San Claudio y Boulevard 18 Sur, Colonia San Manuel, 72570 Puebla, Mexico
| | - Antonio Flores-Riveros
- Instituto
de Física, Benemérita Universidad
Autónoma de Puebla, Avenida San Claudio y Boulevard 18 Sur, Colonia San Manuel, 72570 Puebla, Mexico
| | - Gregorio H. Cocoletzi
- Instituto
de Física, Benemérita Universidad
Autónoma de Puebla, Avenida San Claudio y Boulevard 18 Sur, Colonia San Manuel, 72570 Puebla, Mexico
| | - J. F. Rivas-Silva
- Instituto
de Física, Benemérita Universidad
Autónoma de Puebla, Avenida San Claudio y Boulevard 18 Sur, Colonia San Manuel, 72570 Puebla, Mexico
| |
Collapse
|
12
|
Pakdel M, Raissi H, Hosseini ST. Evaluation the synergistic antitumor effect of methotrexate-camptothecin codelivery prodrug from self-assembly process to acid-catalyzed both drugs release: A comprehensive theoretical study. J Comput Chem 2020; 41:1486-1496. [PMID: 32190916 DOI: 10.1002/jcc.26192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/10/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Therapeutic efficiency of amphiphilic methotrexate-camptothecin (MTX-CPT) prodrug compared to free drug mixture (MTX/CPT) has been investigated using all-atom molecular dynamics simulation and first principles density functional theory calculations. This comparison revealed that MTX-CPT prodrug tends to form spherical self-assembled nanoparticle (NP), while free MTX/CPT mixture forms rod-shape NP. These observations are attributed to a structural defect in the MTX-CPT prodrug and solvation free energies of MTX, CPT and MTX-CPT molecules. The results provided evidence that noncovalent interactions (NCIs) among the pharmaceutical drugs play a very important role in anticancer agents aggregation process, leading to enhanced stability of the self-assembled NPs. It is found that the stability of MTX-CPT self-assembled NP is greater than the MTX/CPT NP due to the synergistic effect of hydrogen bonding between monomers and solvent (water). Moreover, the noncatalyzed as well as catalyzed hydrolysis reactions of MTX-CPT prodrug are theoretically studied at the PCM(water)//M06-2X/6-31G(d,p) computational level to shed additional light on the role of acidic condition in tumor tissues. We found that the ester hydrolysis in mild acidic solutions is a concerted reaction. In an agreement between theory and experiment, we also confirmed that the activation energies of the catalyzed-hydrolysis steps are much lower than the activation energies of the corresponding steps in the noncatalyzed reaction. Thus, the MTX-CPT prodrug reveals very promising properties as a pH-controlled drug delivery system.
Collapse
Affiliation(s)
- Majid Pakdel
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | - Heidar Raissi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | - Seyede T Hosseini
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| |
Collapse
|
13
|
Assessment of dynamical properties of mercaptopurine on the peptide-based metal-organic framework in response to experience of external electrical fields: a molecular dynamics simulation. J Mol Model 2019; 25:304. [PMID: 31493060 DOI: 10.1007/s00894-019-4178-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
Abstract
In this work, the effect of the external electric field (EF) on the drug delivery performance of peptide-based metal-organic framework (MPF) for 6-mercaptopurine (6-MP) drug is investigated by means of the molecular dynamics (MD) simulations. It is found that the strength interaction of drug molecule with MPF is decreased under the influence of the electric field. In other words, the adsorbed drug molecules have more tendencies for the interaction with the porous nanostructure in the absence of EF. According to the radial distribution function (RDF) patterns, the probability of finding drug molecules in terms of the intermolecular distance with respect to the MPF surface is lowest during the high field strength. As the EF strength increases, the spread of drug molecules around MPF results in high dynamics movement and further more diffusion coefficient of drug molecule in the simulation system. This result emphasizes the weak intermolecular interaction of drug molecules with MPF with the application of EF. Assessment of dynamical properties of 6-mercaptopurine in the presence of EF with various strengths reveals that the applied electric field can act as a trigger on liberation behavior of drug from the porous nanostructure.
Collapse
|