1
|
Zhu L, Li Y, Jiang M, Ke C, Long H, Qiu M, Zhang L, Ye C, Zhou X, Jiang ZX, Chen S. Self-Assembly of Precisely Fluorinated Albumin for Dual Imaging-Guided Synergistic Chemo-Photothermal-Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2665-2678. [PMID: 36604154 DOI: 10.1021/acsami.2c19161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although albumin has been extensively used in nanomedicine, it is still challenging to fluorinate albumin into fluorine-19 magnetic resonance imaging (19F MRI)-traceable theranostics because existing strategies lead to severe 19F signal splitting, line broadening, and low 19F MRI sensitivity. To this end, 34-cysteine-selectively fluorinated bovine serum albumins (BSAs) with a sharp singlet 19F peak have been developed as 19F MRI-sensitive and self-assembled frameworks for cancer theranostics. It was found that fluorinated albumin with a non-binding fluorocarbon and a long linker is crucial for avoiding 19F signal splitting and line broadening. With the fluorinated BSAs, paclitaxel (PTX) and IR-780 were self-assembled into stable, monodisperse, and multifunctional nanoparticles in a framework-promoted self-emulsion way. The high tumor accumulation, efficient cancer cell uptake, and laser-triggered PTX sharp release of the BSA nanoparticles enabled 19F MRI-near infrared fluorescence imaging (NIR FLI)-guided synergistic chemotherapy (Chemo), photothermal and photodynamic therapy of xenograft MCF-7 cancer with a high therapeutical index in mice. This study developed a rational synthesis of 19F MRI-sensitive albumin and a framework-promoted self-emulsion of multifunctional BSA nanoparticles, which would promote the development of protein-based high-performance biomaterials for imaging, diagnosis, therapy, and beyond.
Collapse
Affiliation(s)
- Lijun Zhu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Yu Li
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Mou Jiang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Changsheng Ke
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Hanxiong Long
- School of Pharmaceutical Sciences, Wuhan University, Wuhan430071, China
| | - Maosong Qiu
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Lei Zhang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Chaohui Ye
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Xin Zhou
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
2
|
Chaubey B, Singh P, Pal S. Solution-state NMR evaluation of molecular interaction between monoaromatic carboxylic acids and dissolved humic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17775-17788. [PMID: 33400107 DOI: 10.1007/s11356-020-12092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Understanding the nature of interactions between the aromatic organic pollutants with dissolved humic acid (HA) is fundamental for the prediction of their environmental fate and subsequent development of efficient remediation methods. The present study employs solution-state 1H/19F NMR methods to investigate the non-covalent interaction between aqueous peat humic acid (Aldrich HA) and monoaromatic carboxylic acids (CA), viz., 2, 6 diflourobenzoic acid (DFBA) and its non-fluorinated analog, benzoic acid (BA). NMR self-diffusion measurement of HA protons confirmed micellar nature indicating possibility of encapsulation of small molecules through host-guest interaction. 19F-1H and 1H-1H saturation transfer difference (STD) experiments reveal the mode of insertion of CA into HA superstructure. The strength of interaction has been evaluated by analyzing T1/T2 relaxation times and self-diffusion coefficients of CA as a function of HA concentration. Association constants extracted for CA-HA complexes from NMR diffusion experiments reflected that the association between DFBA-HA (2.34 mM-1) is significantly higher than that of BA-HA (0.97 mM-1). The experimental outcome reiterated that substitution of -H with halogen atoms (-F in specific) to aromatic ring plays a dominant role in modulating the strength of association and mode of insertion of organic pollutants into HA superstructure. The present study emphasizes that AHA can be a potential remediating agent for organic contaminants due to its superior binding affinity compared to less humified extracted HA (EHA) from Karwar, Rajasthan, India.
Collapse
Affiliation(s)
- Bhawna Chaubey
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Pooja Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
3
|
Chaubey B, Narwal P, Khandelwal A, Pal S. Aqueous photo-degradation of Flupyradifurone (FPD) in presence of a natural Humic Acid (HA): A quantitative solution state NMR analysis. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|