1
|
Giubertoni G, Chagri S, Argudo PG, Prädel L, Maltseva D, Greco A, Caporaletti F, Pavan A, Ilie IM, Ren Y, Ng DYW, Bonn M, Weil T, Woutersen S. Structural adaptability and surface activity of peptides derived from tardigrade proteins. Protein Sci 2024; 33:e5135. [PMID: 39150232 PMCID: PMC11328126 DOI: 10.1002/pro.5135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Tardigrades are unique micro-organisms with a high tolerance to desiccation. The protection of their cells against desiccation involves tardigrade-specific proteins, which include the so-called cytoplasmic abundant heat soluble (CAHS) proteins. As a first step towards the design of peptides capable of mimicking the cytoprotective properties of CAHS proteins, we have synthesized several model peptides with sequences selected from conserved CAHS motifs and investigated to what extent they exhibit the desiccation-induced structural changes of the full-length proteins. Using circular dichroism spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations, we have found that the CAHS model peptides are mostly disordered, but adopt a moreα $$ \alpha $$ -helical structure upon addition of 2,2,2-trifluoroethanol, which mimics desiccation. This structural behavior is similar to that of full-length CAHS proteins, which also adopt more ordered conformations upon desiccation. We also have investigated the surface activity of the peptides at the air/water interface, which also mimics partial desiccation. Interestingly, sum-frequency generation spectroscopy shows that all model peptides are surface active and adopt a helical structure at the air/water interface. Our results suggest that amino acids with high helix-forming propensities might contribute to the propensity of these peptides to adopt a helical structure when fully or partially dehydrated. Thus, the selected sequences retain part of the CAHS structural behavior upon desiccation, and might be used as a basis for the design of new synthetic peptide-based cryoprotective materials.
Collapse
Affiliation(s)
- Giulia Giubertoni
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sarah Chagri
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Pablo G Argudo
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Leon Prädel
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Daria Maltseva
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Federico Caporaletti
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alberto Pavan
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Ioana M Ilie
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, Amsterdam, Netherlands
- Computational Soft Matter (CSM), University of Amsterdam, Amsterdam, Netherlands
| | - Yong Ren
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - David Y W Ng
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Sander Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Dinic J, Tirrell MV. Effects of Charge Sequence Pattern and Lysine-to-Arginine Substitution on the Structural Stability of Bioinspired Polyampholytes. Biomacromolecules 2024; 25:2838-2851. [PMID: 38567844 PMCID: PMC11094733 DOI: 10.1021/acs.biomac.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/14/2024]
Abstract
A comprehensive study focusing on the combined influence of the charge sequence pattern and the type of positively charged amino acids on the formation of secondary structures in sequence-specific polyampholytes is presented. The sequences of interest consisting exclusively of ionizable amino acids (lysine, K; arginine, R; and glutamic acid, E) are (EKEK)5, (EKKE)5, (ERER)5, (ERRE)5, and (EKER)5. The stability of the secondary structure was examined at three pH values in the presence of urea and NaCl. The results presented here underscore the combined prominent effects of the charge sequence pattern and the type of positively charged monomers on secondary structure formation. Additionally, (ERRE)5 readily aggregated across a wide range of pH. In contrast, sequences with the same charge pattern, (EKKE)5, as well as the sequences with the equivalent amino acid content, (ERER)5, exhibited no aggregate formation under equivalent pH and concentration conditions.
Collapse
Affiliation(s)
- Jelena Dinic
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
Biswas S, Gollub E, Yu F, Ginell G, Holehouse A, Sukenik S, Boothby TC. Helicity of a tardigrade disordered protein contributes to its protective function during desiccation. Protein Sci 2024; 33:e4872. [PMID: 38114424 PMCID: PMC10804681 DOI: 10.1002/pro.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
To survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis-related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here, we demonstrate that the linker region of CAHS D, a desiccation-related IDP from the tardigrade Hypsibius exemplaris, that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix-breaking prolines, modulating the identity of charged residues, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities does not show as strong a trend, suggesting that while helicity is important, it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades-old theory that helicity of desiccation-related IDPs is linked to their anhydrobiotic capacity.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| | - Edith Gollub
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Feng Yu
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Garrett Ginell
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Alex Holehouse
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMissouriUSA
- Center for Biomolecular CondensatesWashington University in St. LouisSt. LouisMissouriUSA
| | - Shahar Sukenik
- Department of Chemistry and BiochemistryUniversity of California, MercedMercedCaliforniaUSA
- Quantitative Systems Biology ProgramUniversity of California MercedMercedCaliforniaUSA
| | - Thomas C. Boothby
- Department of Molecular BiologyUniversity of WyomingLaramieWyomingUSA
| |
Collapse
|
4
|
Triandafillou CG, Pan RW, Dinner AR, Drummond DA. Pervasive, conserved secondary structure in highly charged protein regions. PLoS Comput Biol 2023; 19:e1011565. [PMID: 37844070 PMCID: PMC10602382 DOI: 10.1371/journal.pcbi.1011565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/26/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
Understanding how protein sequences confer function remains a defining challenge in molecular biology. Two approaches have yielded enormous insight yet are often pursued separately: structure-based, where sequence-encoded structures mediate function, and disorder-based, where sequences dictate physicochemical and dynamical properties which determine function in the absence of stable structure. Here we study highly charged protein regions (>40% charged residues), which are routinely presumed to be disordered. Using recent advances in structure prediction and experimental structures, we show that roughly 40% of these regions form well-structured helices. Features often used to predict disorder-high charge density, low hydrophobicity, low sequence complexity, and evolutionarily varying length-are also compatible with solvated, variable-length helices. We show that a simple composition classifier predicts the existence of structure far better than well-established heuristics based on charge and hydropathy. We show that helical structure is more prevalent than previously appreciated in highly charged regions of diverse proteomes and characterize the conservation of highly charged regions. Our results underscore the importance of integrating, rather than choosing between, structure- and disorder-based approaches.
Collapse
Affiliation(s)
- Catherine G. Triandafillou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rosalind Wenshan Pan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Aaron R. Dinner
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Triandafillou CG, Pan RW, Dinner AR, Drummond DA. Pervasive, conserved secondary structure in highly charged protein regions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528637. [PMID: 36824805 PMCID: PMC9949069 DOI: 10.1101/2023.02.15.528637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Understanding how protein sequences confer function remains a defining challenge in molecular biology. Two approaches have yielded enormous insight yet are often pursued separately: structure-based, where sequence-encoded structures mediate function, and disorder-based, where sequences dictate physicochemical and dynamical properties which determine function in the absence of stable structure. Here we study highly charged protein regions (>40% charged residues), which are routinely presumed to be disordered. Using recent advances in structure prediction and experimental structures, we show that roughly 40% of these regions form well-structured helices. Features often used to predict disorder-high charge density, low hydrophobicity, low sequence complexity, and evolutionarily varying length-are also compatible with solvated, variable-length helices. We show that a simple composition classifier predicts the existence of structure far better than well-established heuristics based on charge and hydropathy. We show that helical structure is more prevalent than previously appreciated in highly charged regions of diverse proteomes and characterize the conservation of highly charged regions. Our results underscore the importance of integrating, rather than choosing between, structure- and disorder-based approaches.
Collapse
Affiliation(s)
| | - Rosalind Wenshan Pan
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | | | - D. Allan Drummond
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| |
Collapse
|
6
|
Dinic J, Schnorenberg MR, Tirrell MV. Sequence-Controlled Secondary Structures and Stimuli Responsiveness of Bioinspired Polyampholytes. Biomacromolecules 2022; 23:3798-3809. [PMID: 35969881 DOI: 10.1021/acs.biomac.2c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A comprehensive study focusing on the influence of the sequence charge pattern on the secondary structure preferences of annealed polyampholytes and their responsiveness to external stimuli is presented. Two sequences are designed composed entirely of ionizable amino acids (charge fraction, f = 1) and an equal number of positive and negative charges (f+ = f- = 0.5) with distinct charge patterns consisting of lysine and glutamic acid monomers. The study reveals that the sequence charge pattern has a significant influence on the secondary structure preferences of polyampholytes at physiological pH. Furthermore, it shows that external stimuli such as pH, ionic strength, and solvent dielectric constant can be used to modulate the secondary structure of the two studied sequences. The observed secondary structure transformations for the two sequences are also substantially different from those determined for uniformly charged homo-polypeptides under matching conditions.
Collapse
Affiliation(s)
- Jelena Dinic
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Mathew R Schnorenberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Choi YJ, Lee Y, Lin Y, Heo Y, Lee YH, Song K. The Multivalent Polyampholyte Domain of Nst1, a P-Body-Associated Saccharomyces cerevisiae Protein, Provides a Platform for Interacting with P-Body Components. Int J Mol Sci 2022; 23:ijms23137380. [PMID: 35806385 PMCID: PMC9266425 DOI: 10.3390/ijms23137380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
The condensation of nuclear promyelocytic leukemia bodies, cytoplasmic P-granules, P-bodies (PBs), and stress granules is reversible and dynamic via liquid–liquid phase separation. Although each condensate comprises hundreds of proteins with promiscuous interactions, a few key scaffold proteins are required. Essential scaffold domain sequence elements, such as poly-Q, low-complexity regions, oligomerizing domains, and RNA-binding domains, have been evaluated to understand their roles in biomolecular condensation processes. However, the underlying mechanisms remain unclear. We analyzed Nst1, a PB-associated protein that can intrinsically induce PB component condensations when overexpressed. Various Nst1 domain deletion mutants with unique sequence distributions, including intrinsically disordered regions (IDRs) and aggregation-prone regions, were constructed based on structural predictions. The overexpression of Nst1 deletion mutants lacking the aggregation-prone domain (APD) significantly inhibited self-condensation, implicating APD as an oligomerizing domain promoting self-condensation. Remarkably, cells overexpressing the Nst1 deletion mutant of the polyampholyte domain (PD) in the IDR region (Nst1∆PD) rarely accumulate endogenous enhanced green fluorescent protein (EGFP)-tagged Dcp2. However, Nst1∆PD formed self-condensates, suggesting that Nst1 requires PD to interact with Dcp2, regardless of its self-condensation. In Nst1∆PD-overexpressing cells treated with cycloheximide (CHX), Dcp2, Xrn1, Dhh1, and Edc3 had significantly diminished condensation compared to those in CHX-treated Nst1-overexpressing cells. These observations suggest that the PD of the IDR in Nst1 functions as a hub domain interacting with other PB components.
Collapse
Affiliation(s)
- Yoon-Jeong Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.-J.C.); (Y.L.)
| | - Yujin Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.-J.C.); (Y.L.)
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Chungbuk 28119, Korea; (Y.L.); (Y.H.); (Y.-H.L.)
| | - Yunseok Heo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Chungbuk 28119, Korea; (Y.L.); (Y.H.); (Y.-H.L.)
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Chungbuk 28119, Korea; (Y.L.); (Y.H.); (Y.-H.L.)
- Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University (CNU), Daejeon 34134, Korea
| | - Kiwon Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; (Y.-J.C.); (Y.L.)
- Correspondence: ; Tel.: +82-2-2123-2705; Fax: +82-2-362-9897
| |
Collapse
|
8
|
Kudaibergenov SE. Synthetic and natural polyampholytes: Structural and behavioral similarity. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology Atyrau Kazakhstan
- Laboratory of Engineering Profile Satbayev University Almaty Kazakhstan
| |
Collapse
|
9
|
Guo C, Yu J, Horsley JR, Sheves M, Cahen D, Abell AD. Backbone-Constrained Peptides: Temperature and Secondary Structure Affect Solid-State Electron Transport. J Phys Chem B 2019; 123:10951-10958. [PMID: 31777245 DOI: 10.1021/acs.jpcb.9b07753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The primary sequence and secondary structure of a peptide are crucial to charge migration, not only in solution (electron transfer, ET), but also in the solid-state (electron transport, ETp). Hence, understanding the charge migration mechanisms is fundamental to the development of biomolecular devices and sensors. We report studies on four Aib-containing helical peptide analogues: two acyclic linear peptides with one and two electron-rich alkene-based side chains, respectively, and two peptides that are further rigidified into a macrocycle by a side bridge constraint, containing one or no alkene. ETp was investigated across Au/peptide/Au junctions, between 80 and 340 K in combination with the molecular dynamic (MD) simulations. The results reveal that the helical structure of the peptide and electron-rich side chain both facilitate the ETp. As temperature increases, the loss of helical structure, change of monolayer tilt angle, and increase of thermally activated fluctuations affect the conductance of peptides. Specifically, room temperature conductance across the peptide monolayers correlates well with previously observed ET rate constants, where an interplay between backbone rigidity and electron-rich side chains was revealed. Our findings provide new means to manipulate electronic transport across solid-state peptide junctions.
Collapse
Affiliation(s)
- Cunlan Guo
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - John R Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Mordechai Sheves
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - David Cahen
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Andrew D Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Institute of Photonics and Advanced Sensing (IPAS), Department of Chemistry , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| |
Collapse
|
10
|
Zhang X, Zhu Y, Wang X, Wang P, Tian J, Zhu W, Song J, Xiao H. Revealing Adsorption Behaviors of Amphoteric Polyacrylamide on Cellulose Fibers and Impact on Dry Strength of Fiber Networks. Polymers (Basel) 2019; 11:polym11111886. [PMID: 31731637 PMCID: PMC6918427 DOI: 10.3390/polym11111886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
Amphoteric polyacrylamide (AmPAM) has been widely used in a variety of industrial areas and the adsorption behavior of AmPAM plays a crucial role in its applications. In this study, a series of AmPAMs with various molecular weights (MW) were synthesized; and their impact on dry strength of fiber networks or paper was assessed. The results showed that the optimal MW of AmPAM for strength enhancement ranged between 300 and 500 k. More importantly, the adsorption behaviors of three typical AmPAM samples on silica (model substrate) and cellulose surfaces were revealed using a quartz crystal microbalance with dissipation monitoring (QCM-D) in situ and in real time. The adsorption dynamics of AmPAM and the conformation of the adlayers were further derived. The results indicated that a relatively high adsorption amount was achieved under the conditions of a high polymer concentration, a medium pH close to its isoelectric point (IEP), a mild ionic strength, and a high charged surface; whereas the MW of AmPAM had little effect on the equilibrium adsorption mass of AmPAM, but significantly affected the conformation of adsorbed layer on substrates. Based on the adsorption behaviors of AmPAM, the explanation of the best dry strength achieved in a narrow range of MW of AmPAM is proposed. It was concluded that the appropriate balance between bridging and flocculation, penetration into fiber pores, and conformation were only achieved in the optimal MW range of AmPAM. The findings obtained from in this work enable us to better understand the adsorption behaviors of polyampholyte, and provide a guideline on molecular design of AmPAM and its applications from both fundamental and practical points of view.
Collapse
Affiliation(s)
- Xinyu Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (X.W.); (P.W.); (J.T.); (W.Z.)
| | - Yangyang Zhu
- China Light Industry Wuhan Design and Engineering Co. Ltd, Wuhan 430060, China;
| | - Xiaoyan Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (X.W.); (P.W.); (J.T.); (W.Z.)
| | - Peipei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (X.W.); (P.W.); (J.T.); (W.Z.)
| | - Jing Tian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (X.W.); (P.W.); (J.T.); (W.Z.)
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (X.W.); (P.W.); (J.T.); (W.Z.)
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (X.W.); (P.W.); (J.T.); (W.Z.)
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-25-85428163, Fax: +86-25-85428689
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| |
Collapse
|