1
|
Lamch Ł, Szczęsna W, Balicki SJ, Bartman M, Szyk-Warszyńska L, Warszyński P, Wilk KA. Multiheaded Cationic Surfactants with Dedicated Functionalities: Design, Synthetic Strategies, Self-Assembly and Performance. Molecules 2023; 28:5806. [PMID: 37570776 PMCID: PMC10421305 DOI: 10.3390/molecules28155806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Contemporary research concerning surfactant science and technology comprises a variety of requirements relating to the design of surfactant structures with widely varying architectures to achieve physicochemical properties and dedicated functionality. Such approaches are necessary to make them applicable to modern technologies, such as nanostructure engineering, surface structurization or fine chemicals, e.g., magnetic surfactants, biocidal agents, capping and stabilizing reagents or reactive agents at interfaces. Even slight modifications of a surfactant's molecular structure with respect to the conventional single-head-single-tail design allow for various custom-designed products. Among them, multicharge structures are the most intriguing. Their preparation requires specific synthetic routes that enable both main amphiphilic compound synthesis using appropriate step-by-step reaction strategies or coupling approaches as well as further derivatization toward specific features such as magnetic properties. Some of the most challenging aspects of multicharge cationic surfactants relate to their use at different interfaces for stable nanostructures formation, applying capping effects or complexation with polyelectrolytes. Multiheaded cationic surfactants exhibit strong antimicrobial and antiviral activity, allowing them to be implemented in various biomedical fields, especially biofilm prevention and eradication. Therefore, recent advances in synthetic strategies for multiheaded cationic surfactants, their self-aggregation and performance are scrutinized in this up-to-date review, emphasizing their applications in different fields such as building blocks in nanostructure engineering and their use as fine chemicals.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Weronika Szczęsna
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Sebastian J. Balicki
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Marcin Bartman
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Liliana Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| |
Collapse
|
2
|
Zhou G, Jiang K. Formation and Structure of Nanotubes in Imidazolium-Based Ionic Liquid Aqueous Solution. ACS OMEGA 2022; 7:45598-45608. [PMID: 36530223 PMCID: PMC9753178 DOI: 10.1021/acsomega.2c06381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Self-assembled structures have attracted much attention for their potential applications in biological and electrochemical studies. Understanding the aggregation mechanism is necessary for utilizing the structures and improving the properties. In this study, the tubular cluster aggregations formed by the 1-dodecyl-3-methylimidazolium salicylate ([C12mim][Sal]) have been studied by molecular dynamics simulations. The rod-like and funnel-shaped structures were observed during the simulations, and finally, the nanotube structure enclosed by a bilayer membrane was formed. For the first time, the point cloud fitting method was used to obtain the axis equation of the tubular cluster. Based on the equation, the structure of tubular clusters was analyzed in detail. The imidazolium ring and anions were distributed at the ionic liquid-water interface, while the dodecyl groups were buried in the nanotube membrane away from the water. Electrostatic interactions between cations and anions played a dominant role in stabilizing the structure of the nanotube. The tubular cluster size, membrane thickness, and permeability of water molecules through the membrane of the cluster were also calculated. Furthermore, the orientation analysis revealed that multitudinous aggregation structures could be formed by the long alkyl chain in aqueous solution, which might be beneficial for the strengthening and separating processes.
Collapse
Affiliation(s)
- Guohui Zhou
- School
of Chemistry and Chemical Engineering, Qingdao
University, Qingdao, Shandong 266071, China
| | - Kun Jiang
- Qingdao
University, Qingdao, Shandong 266071, China
| |
Collapse
|
3
|
Warszyński P, Szyk-Warszyńska L, Wilk KA, Lamch Ł. Adsorption of cationic multicharged surfactants at liquid/gas interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Yang XD, Chen W, Ren Y, Chu LY. Exploration of the Adsorption Kinetics of Surfactants at the Water-Oil Interface via Grand-Canonical Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1277-1286. [PMID: 35015552 DOI: 10.1021/acs.langmuir.1c03205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is well-known that surfactants tend to aggregate into clusters or micelles in aqueous solutions due to their special structures, and it is difficult for the surfactant molecules involved in the aggregation to move spontaneously to the oil-water interface. In this article, we developed a new grand-canonical molecular dynamics (GCMD) model to predict the saturated adsorption amount of surfactant with constant concentration of surfactant molecules in the bulk phase, which can prevent surfactants aggregating in the bulk phase and get the atomic details of the interfacial structural change with increase of the adsorption amount through a single GCMD run. The adsorption of anionic surfactant sodium dodecyl sulfate (SDS) at the heptane-water interface was studied to validate the model. The saturated adsorption amount obtained from the GCMD simulation is consistent with the experimental results. The adsorption kinetics of SDS molecules during the simulation can be divided into three stages: linear adsorption stage, transition adsorption stage, and dynamic equilibrium stage. We also carried out equilibrium molecular dynamics (EMD) simulations to compare with GCMD simulation. This GCMD model can effectively reduce the simulation time with correct prediction of the interfacial saturation adsorption. We believe the GCMD method could be especially helpful for the computational study of surfactant adsorption under complex environments or emulsion systems with the adsorption of multiple types of surfactants.
Collapse
Affiliation(s)
- Xue-Dan Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049,China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049,China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
5
|
Dash S, Chowdhury UD, Bhargava BL. The effect of external salts on the aggregation of the multiheaded surfactants: All-atom molecular dynamics studies. J Mol Graph Model 2021; 111:108110. [PMID: 34959150 DOI: 10.1016/j.jmgm.2021.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/01/2022]
Abstract
Tailoring the molecular design of the surfactants leads to changes in the aggregation properties. The role of external salts on the aggregation properties of the multiheaded surfactants is investigated using molecular dynamics simulations. The multiheaded surfactants show differential aggregation properties on addition of external salts, as reported earlier from experimental studies. We have modelled the multiheaded surfactants to study the effect of external salts (potassium bromide and sodium salicylate) at three different concentrations using the all-atom modelling and explicit solvation. The influence of external salts on the hydration and aggregation propensity, hydrogen bonding, and the structural characteristics of the surfactant aggregates are probed using various analyses across the four groups of multiheaded surfactants. The larger salicylate ion masks the repulsion between the cationic head groups and acts as an effective promoter of aggregation.
Collapse
Affiliation(s)
- Sandeep Dash
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, HBNI, P.O.Jatni, Khurda, Odisha, 752 050, India
| | - Unmesh D Chowdhury
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, HBNI, P.O.Jatni, Khurda, Odisha, 752 050, India
| | - B L Bhargava
- School of Chemical Sciences, National Institute of Science Education & Research-Bhubaneswar, HBNI, P.O.Jatni, Khurda, Odisha, 752 050, India.
| |
Collapse
|
6
|
Affiliation(s)
- Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB India
| |
Collapse
|