1
|
Weimar J, Hirschmann F, Oettel M. Effective patchiness from critical points of a coarse-grained protein model with explicit shape and charge anisotropy. SOFT MATTER 2024. [PMID: 39400290 DOI: 10.1039/d4sm00867g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colloidal model systems are successful in rationalizing emergent phenomena like aggregation, rheology and phase behaviour of protein solutions. Colloidal theory in conjunction with isotropic interaction models is often employed to estimate the stability of such solutions. In particular, a universal criterion for the reduced second virial coefficient at the critical point is frequently invoked which is based on the behavior of short-range attractive fluids (Noro-Frenkel rule, ). However, if anisotropic models for the protein-protein interaction are considered, e.g. the Kern-Frenkel (KF) patchy particle model, the value of the criterion is shifted to lower values and explicitly depends on the number of patches. If an explicit shape anisotropy is considered, as e.g. in a coarse-grained protein model, the normalization of becomes ambiguous to some extent, as no unique exclusion volume can be defined anymore. Here, we investigate a low-resolution, coarse-grained model for the globular protein bovine serum albumin (BSA) and study effects of charge-anisotropy on the phase diagram (determined by simulations) at the isoelectric point. We present methods of assigning an "effective patchiness" to our protein model by comparing its critical properties to the KF model. We find that doubling the native charges increases the critical temperature Tc by ≈14% and that our BSA model can be compared to a 3 to 5 patch KF model. Finally, we argue that applying existing criteria from colloidal theory should be done with care, due to multiple, physically plausible ways of how to assign effective diameters to shape-anisotropic models.
Collapse
Affiliation(s)
- Jens Weimar
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Frank Hirschmann
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Martin Oettel
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Liu Y, Tuttle MD, Kostylev MA, Roseman GP, Zilm KW, Strittmatter SM. Cellular Prion Protein Conformational Shift after Liquid-Liquid Phase Separation Regulated by a Polymeric Antagonist and Mutations. J Am Chem Soc 2024; 146:27903-27914. [PMID: 39326869 PMCID: PMC11469297 DOI: 10.1021/jacs.4c10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrPC) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid-co-maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrPC and amyloid-β oligomers (Aβo). We show that PSCMA can induce reentrant LLPS of PrPC and lower the saturation concentration (Csat) of PrPC by 100-fold. Regardless of the induction method, PrPC molecules subsequently undergo a maturation process to restrict molecular motion in a more solid-like state. The PSCMA-induced LLPS of PrPC stabilizes the intermediate LLPS conformational state detected by NMR, though the final matured β-sheet-rich state of PrPC is indistinguishable between induction conditions. The disease-associated E200 K mutation of PrPC also accelerates maturation. This post-LLPS shift in protein conformation and dynamics is a possible mechanism of LLPS-induced neurodegeneration.
Collapse
Affiliation(s)
- Yangyi Liu
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Marcus D. Tuttle
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Mikhail A. Kostylev
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Graham P. Roseman
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| | - Kurt W. Zilm
- Department
of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stephen M. Strittmatter
- Departments
of Neuroscience and Neurology, Yale School
of Medicine, 100 College Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
3
|
Senft MD, Maier R, Hiremath A, Zhang F, Schreiber F. Effective interactions and phase behavior of protein solutions in the presence of hexamine cobalt(III) chloride. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:119. [PMID: 38051398 PMCID: PMC10698144 DOI: 10.1140/epje/s10189-023-00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
It is well established that deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) exhibit a reentrant condensation (RC) phase behavior in the presence of the trivalent hexamine cobalt(III) cations (Hac) which can be important for their packing and folding. A similar behavior can be observed for negatively charged globular proteins in the presence of trivalent metal cations, such as Y3+ or La3+. This phase behavior is mainly driven by charge inversion upon an increasing salt concentration for a fixed protein concentration (cp). However, as Hac exhibits structural differences compared to other multivalent metal cations, with six ammonia ligands (NH3) covalently bonded to the central cobalt atom, it is not clear that Hac can induce a similar phase behavior for proteins. In this work, we systematically investigate whether negatively charged globular proteins β-lactoglobulin (BLG), bovine serum albumin (BSA), human serum albumin (HSA) and ovalbumin (OVA) feature Hac-induced RC. Effective protein-protein interactions were investigated by small-angle X-ray scattering. The reduced second virial coefficient (B2/B2HS) was obtained as a function of salt concentration. The virial coefficient analysis performed confirms the reentrant interaction (RI) behavior for BLG without actually inducing RC, given the insufficient strengths of the interactions for the latter to occur. In contrast, the strength of attraction for BSA, HSA and OVA are too weak to show RC. Model free analysis of the inverse intensity [Formula: see text] also supports this finding. Looking at different q-range by employing static (SLS) and dynamic light scattering experiments, the presence of RI behavior can be confirmed. The results are further discussed in view of metal cation binding sites in nucleic acids (DNA and RNA), where Hac induced RC phase behavior.
Collapse
Affiliation(s)
- Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany.
| | - Ralph Maier
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Anusha Hiremath
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany.
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Saha R, Mitra RK. Thermo-Resistive Phase Behavior of Trivalent Ion-Induced Microscopic Protein-Rich Phases: Correlating with Ion-Specific Protein Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4601-4610. [PMID: 36952287 DOI: 10.1021/acs.langmuir.2c03302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proteins, in the presence of trivalent cations, exhibit intriguing phase behavior which is contrasting compared to mono- and divalent cations. At room temperature (RT), trivalent cations induce microscopic liquid-liquid phase separation (LLPS) in which a protein-rich phase coexists with a dilute phase. The critical solution temperature related phenomena in these complex fluids are well studied; however, such studies have mostly been restricted below the denaturation temperature (TM) of the protein(s) involved. Here, we probe the phase behavior of bovine serum albumin (BSA) incubated at 70 °C (>TM) in the presence of Na+, Mg2+, La3+, Y3+, and Ho3+ ions. BSA in the presence of mono- and bivalent ions forms an intense gel phase at 70 °C; however, the trivalent salts offer remarkable thermal resistivity and retain the fluid LLPS phase. We determine the microscopic phase behavior using differential interference contrast optical microscopy, which shows that the LLPS droplet structures in the M3+ ion-containing protein solutions prevail upon heating, whereas Mg2+ forms composed cross-linking gelation upon thermal incubation. We probe the interior environment of the protein aggregates by ps-resolved fluorescence anisotropy measurements using 8-anilino-1-naphthalenesulfonic acid (ANS) as an extrinsic fluorophore. It reveals that while the LLPS phase retains the rotational time constants upon heating, in the case of gelation, the immediate environment of ANS gets significantly perturbed. We investigate the explicit protein hydration at RT as well as at T > TM using the ATR THz-FTIR (1.5-22.5 THz) spectroscopy technique and found that hydration shows strong ion specificity and correlates the phase transition behavior.
Collapse
Affiliation(s)
- Ria Saha
- Department of Chemical and Biological Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Rajib Kumar Mitra
- Department of Chemical and Biological Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
5
|
Ainani H, Bouchmaa N, Ben Mrid R, El Fatimy R. Liquid-liquid phase separation of protein tau: An emerging process in Alzheimer's disease pathogenesis. Neurobiol Dis 2023; 178:106011. [PMID: 36702317 DOI: 10.1016/j.nbd.2023.106011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Metabolic reactions within cells occur in various isolated compartments with or without borders, the latter being known as membrane-less organelles (MLOs). The MLOs show liquid-like properties and are formed by a process known as liquid-liquid phase separation (LLPS). MLOs contribute to different molecules interactions such as protein-protein, protein-RNA, and RNA-RNA driven by various factors, such as multivalency of intrinsic disorders. MLOs are involved in several cell signaling pathways such as transcription, immune response, and cellular organization. However, disruption of these processes has been found in different pathologies. Recently, it has been demonstrated that protein aggregates, a characteristic of some neurodegenerative diseases, undergo similar phase separation. Tau protein is known as a major neurofibrillary tangles component in Alzheimer's disease (AD). This protein can undergo phase separation to form a MLO known as tau droplet in vitro and in vivo, and this process can be facilitated by several factors, including crowding agents, RNA, and phosphorylation. Tau droplet has been shown to mature into insoluble aggregates suggesting that this process may precede and induce neurodegeneration in AD. Here we review major factors involved in liquid droplet formation within a cell. Additionally, we highlight recent findings concerning tau aggregation following phase separation in AD, along with the potential therapeutic strategies that could be explored in this process against the progression of this pathology.
Collapse
Affiliation(s)
- Hassan Ainani
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco.
| |
Collapse
|
6
|
Hirschmann F, Lopez H, Roosen-Runge F, Seydel T, Schreiber F, Oettel M. Effects of flexibility in coarse-grained models for bovine serum albumin and immunoglobulin G. J Chem Phys 2023; 158:084112. [PMID: 36859072 DOI: 10.1063/5.0132493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
We construct a coarse-grained, structure-based, low-resolution, 6-bead flexible model of bovine serum albumin (BSA, PDB: 4F5S), which is a popular example of a globular protein in biophysical research. The model is obtained via direct Boltzmann inversion using all-atom simulations of a single molecule, and its particular form is selected from a large pool of 6-bead coarse-grained models using two suitable metrics that quantify the agreement in the distribution of collective coordinates between all-atom and coarse-grained Brownian dynamics simulations of solutions in the dilute limit. For immunoglobulin G (IgG), a similar structure-based 12-bead model has been introduced in the literature [Chaudhri et al., J. Phys. Chem. B 116, 8045 (2012)] and is employed here to compare findings for the compact BSA molecule and the more anisotropic IgG molecule. We define several modified coarse-grained models of BSA and IgG, which differ in their internal constraints and thus account for a variation of flexibility. We study denser solutions of the coarse-grained models with purely repulsive molecules (achievable by suitable salt conditions) and address the effect of packing and flexibility on dynamic and static behavior. Translational and rotational self-diffusivity is enhanced for more elastic models. Finally, we discuss a number of effective sphere sizes for the BSA molecule, which can be defined from its static and dynamic properties. Here, it is found that the effective sphere diameters lie between 4.9 and 6.1 nm, corresponding to a relative spread of about ±10% around a mean of 5.5 nm.
Collapse
Affiliation(s)
- Frank Hirschmann
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Hender Lopez
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Grangegorman D07 ADY7, Ireland
| | - Felix Roosen-Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden
| | - Tilo Seydel
- Institut Max von Laue-Paul Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Frank Schreiber
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Martin Oettel
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat Commun 2022; 13:7845. [PMID: 36543777 PMCID: PMC9768726 DOI: 10.1038/s41467-022-35265-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
The assembly of biomolecules into condensates is a fundamental process underlying the organisation of the intracellular space and the regulation of many cellular functions. Mapping and characterising phase behaviour of biomolecules is essential to understand the mechanisms of condensate assembly, and to develop therapeutic strategies targeting biomolecular condensate systems. A central concept for characterising phase-separating systems is the phase diagram. Phase diagrams are typically built from numerous individual measurements sampling different parts of the parameter space. However, even when performed in microwell plate format, this process is slow, low throughput and requires significant sample consumption. To address this challenge, we present here a combinatorial droplet microfluidic platform, termed PhaseScan, for rapid and high-resolution acquisition of multidimensional biomolecular phase diagrams. Using this platform, we characterise the phase behaviour of a wide range of systems under a variety of conditions and demonstrate that this approach allows the quantitative characterisation of the effect of small molecules on biomolecular phase transitions.
Collapse
|
8
|
Sarkar S, Kundu S. Effect of different valent ions (Na+, Ca2+ & Y3+) on structural and morphological features of protein (BSA) thin films adsorbed on hydrophobic silicon (H-Si) surface. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Saha R, Mitra RK. Trivalent cation-induced phase separation in proteins: ion specific contribution in hydration also counts. Phys Chem Chem Phys 2022; 24:23661-23668. [PMID: 36148614 DOI: 10.1039/d2cp01061e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multivalent (specifically trivalent) metal ions are known to induce microscopic phase separation (commonly termed as liquid-liquid phase separation (LLPS)) in negatively charged globular proteins even at ambient temperatures, the process being mostly driven by protein charge neutralization followed by aggregation. Recent simulation studies have revealed that such self-aggregation of proteins is entropy driven; however, it is associated with a solvation effect, which could as well be different from the usual notion of hydrophobic hydration. In this contribution we have experimentally probed the explicit change in hydration associated with ion-induced LLPS formation of a globular protein bovine serum albumin (BSA) at ambient temperature using FIR-THz FTIR spectroscopy (50-750 cm-1; 1.5-22.5 THz). We have used ions of different charges: Na+, K+, Ca2+, Mg2+, La3+, Y3+, Ho3+ and Al3+. We found that all the trivalent ions induce LLPS; the formation of large aggregates has been evidenced from dynamic light scattering (DLS) measurements, but without perturbing the protein structure as confirmed from circular dichroism (CD) measurements. From the frequency dependent absorption coefficient (α(ν)) measurements in the THz frequency domain we estimate the various stretching/vibrational modes of water and we found that ions, forming LLPS, produce definite perturbation in the overall hydration, the extent of which is ion specific, invoking the definite role of hydrophilic (electrostatic) hydration of ions in the observed LLPS process.
Collapse
Affiliation(s)
- Ria Saha
- Department of Chemical, Biological & Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD; Sector-III, Salt Lake, Kolkata-700106, India.
| | - Rajib Kumar Mitra
- Department of Chemical, Biological & Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD; Sector-III, Salt Lake, Kolkata-700106, India.
| |
Collapse
|
10
|
Hansen J, Pedersen JN, Pedersen JS, Egelhaaf SU, Platten F. Universal effective interactions of globular proteins close to liquid–liquid phase separation: Corresponding-states behavior reflected in the structure factor. J Chem Phys 2022; 156:244903. [DOI: 10.1063/5.0088601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intermolecular interactions in protein solutions, in general, contain many contributions. If short-range attractions dominate, the state diagram exhibits liquid–liquid phase separation (LLPS) that is metastable with respect to crystallization. In this case, the extended law of corresponding states (ELCS) suggests that thermodynamic properties are insensitive to details of the underlying interaction potential. Using lysozyme solutions, we investigate the applicability of the ELCS to the static structure factor and how far effective colloidal interaction models can help to rationalize the phase behavior and interactions of protein solutions in the vicinity of the LLPS binodal. The (effective) structure factor has been determined by small-angle x-ray scattering. It can be described by Baxter’s adhesive hard-sphere model, which implies a single fit parameter from which the normalized second virial coefficient b2 is inferred and found to quantitatively agree with previous results from static light scattering. The b2 values are independent of protein concentration but systematically vary with temperature and solution composition, i.e., salt and additive content. If plotted as a function of temperature normalized by the critical temperature, the values of b2 follow a universal behavior. These findings validate the applicability of the ELCS to globular protein solutions and indicate that the ELCS can also be reflected in the structure factor.
Collapse
Affiliation(s)
- Jan Hansen
- Heinrich Heine University, Condensed Matter Physics Laboratory, Düsseldorf, Germany
| | - Jannik N. Pedersen
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jan Skov Pedersen
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stefan U. Egelhaaf
- Heinrich Heine University, Condensed Matter Physics Laboratory, Düsseldorf, Germany
| | - Florian Platten
- Heinrich Heine University, Condensed Matter Physics Laboratory, Düsseldorf, Germany
- Forschungszentrum Jülich, Institute of Biological Information Processing IBI-4, Biomacromolecular Systems and Processes, Jülich, Germany
| |
Collapse
|
11
|
Pandit S, Kundu S, Aswal VK. Interaction among bovine serum albumin (BSA) molecules in the presence of anions: a small-angle neutron scattering study. J Biol Phys 2022; 48:237-251. [PMID: 35416637 DOI: 10.1007/s10867-022-09608-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/30/2022] [Indexed: 01/01/2023] Open
Abstract
Protein-protein interaction in solution strongly depends on dissolved ions and solution pH. Interaction among globular protein (bovine serum albumin, BSA), above and below of its isoelectric point (pI ≈ 4.8), is studied in the presence of anions (Cl-, Br-, I-, F-, SO42-) using small-angle neutron scattering (SANS) technique. The SANS study reveals that the short-range attraction among BSA molecules remains nearly unchanged in the presence of anions, whereas the intermediate-range repulsive interaction increases following the Hofmeister series of anions. Although the interaction strength modifies below and above the pI of BSA, it nearly follows the series.
Collapse
Affiliation(s)
- Subhankar Pandit
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Assam, 781035, Garchuk, Guwahati, India
| | - Sarathi Kundu
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Assam, 781035, Garchuk, Guwahati, India.
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| |
Collapse
|
12
|
Temporal and spatial characterisation of protein liquid-liquid phase separation using NMR spectroscopy. Nat Commun 2022; 13:1767. [PMID: 35365630 PMCID: PMC8976059 DOI: 10.1038/s41467-022-29408-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of protein solutions is increasingly recognised as an important phenomenon in cell biology and biotechnology. However, opalescence and concentration fluctuations render LLPS difficult to study, particularly when characterising the kinetics of the phase transition and layer separation. Here, we demonstrate the use of a probe molecule trifluoroethanol (TFE) to characterise the kinetics of protein LLPS by NMR spectroscopy. The chemical shift and linewidth of the probe molecule are sensitive to local protein concentration, with this sensitivity resulting in different characteristic signals arising from the dense and lean phases. Monitoring of these probe signals by conventional bulk-detection 19F NMR reports on the formation and evolution of both phases throughout the sample, including their concentrations and volumes. Meanwhile, spatially-selective 19F NMR, in which spectra are recorded from smaller slices of the sample, was used to track the distribution of the different phases during layer separation. This experimental strategy enables comprehensive characterisation of the process and kinetics of LLPS, and may be useful to study phase separation in protein systems as a function of their environment.
Collapse
|
13
|
Exploring Nucleation Pathways in Distinct Physicochemical Environments Unveiling Novel Options to Modulate and Optimize Protein Crystallization. CRYSTALS 2022. [DOI: 10.3390/cryst12030437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The scientific discussion about classical and nonclassical nucleation theories has lasted for two decades so far. Recently, multiple nucleation pathways and the occurrence and role of metastable intermediates in crystallization processes have attracted increasing attention, following the discovery of functional phase separation, which is now under investigation in different fields of cellular life sciences, providing interesting and novel aspects for conventional crystallization experiments. In this context, more systematic investigations need to be carried out to extend the current knowledge about nucleation processes. In terms of the data we present, a well-studied model protein, glucose isomerase (GI), was employed first to investigate systematically the early stages of the crystallization process, covering condensing and prenucleation ordering of protein molecules in diverse scenarios, including varying ionic and crowding agent conditions, as well as the application of a pulsed electric field (pEF). The main method used to characterize the early events of nucleation was synchronized polarized and depolarized dynamic light scattering (DLS/DDLS), which is capable of collecting the polarized and depolarized component of scattered light from a sample suspension in parallel, thus monitoring the time-resolved evolution of the condensation and geometrical ordering of proteins at the early stages of nucleation. A diffusion interaction parameter, KD, of GI under varying salt conditions was evaluated to discuss how the proportion of specific and non-specific protein–protein interactions affects the nucleation process. The effect of mesoscopic ordered clusters (MOCs) on protein crystallization was explored further by adding different ratios of MOCs induced by a pEF to fresh GI droplets in solution with different PEG concentrations. To emphasize and complement the data and results obtained with GI, a recombinant pyridoxal 5-phosphate (vitamin B6) synthase (Pdx) complex of Staphylococcus aureus assembled from twelve monomers of Pdx1 and twelve monomers of Pdx2 was employed to validate the ability of the pEF influencing the nucleation of complex macromolecules and the effect of MOCs on adjusting the crystallization pathway. In summary, our data revealed multiple nucleation pathways by tuning the proportion of specific and non-specific protein interactions, or by utilizing a pEF which turned out to be efficient to accelerate the nucleation process. Finally, a novel and reproducible experimental strategy, which can adjust and facilitate a crystallization process by pEF-induced MOCs, was summarized and reported for the first time.
Collapse
|
14
|
Effect of Temperature on Re-entrant Condensation of Globular Protein in Presence of Tri-valent Ions. J Fluoresc 2022; 32:791-797. [DOI: 10.1007/s10895-021-02874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
|
15
|
Fries MR, Skoda MWA, Conzelmann NF, Jacobs RMJ, Maier R, Scheffczyk N, Zhang F, Schreiber F. Bulk phase behaviour vs interface adsorption: Effects of anions and isotopes on β-lactoglobulin (BLG) interactions. J Colloid Interface Sci 2021; 598:430-443. [PMID: 33930747 DOI: 10.1016/j.jcis.2021.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 01/17/2023]
Abstract
HYPOTHESIS Protein adsorption is highly relevant in numerous applications ranging from food processing to medical implants. In this context, it is important to gain a deeper understanding of protein-protein and protein-surface interactions. Thus, the focus of this investigation is on the interplay of bulk properties and surface properties on protein adsorption. It was hypothesised that the type of solvent and ions in solution should significantly influence the protein's bulk and interface behaviour, which has been observed in literature and previous work for other net negatively charged, globular proteins such as bovine serum albumin (BSA). EXPERIMENTS The phase behaviour of β-lactoglobulin (BLG) with lanthanum chloride (LaCl3) and iodide (LaI3) in normal water H2O(l) and heavy water (D2O(l)) was established via optical microscopy and ultraviolet-visible spectroscopy. The formation of an adsorption layer and its properties such as thickness, density, structure, and hydration was investigated via neutron reflectivity, quartz-crystal microbalance with dissipation, and infra-red measurements. FINDINGS β-lactoglobulin does not show significant anion-induced or isotope-induced effects - neither in bulk nor at the solid-liquid interface, which deviates strongly from the behaviour of bovine serum albumin. We also provide a comprehensive discussion and comparison of protein-specific bulk and interface behaviour between bovine serum albumin and β-lactoglobulin dependent on anion, cation, solvent, and substrate properties. These findings pave the way for understanding the transition from adsorption to crystallisation.
Collapse
Affiliation(s)
- Madeleine R Fries
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany.
| | - Maximilian W A Skoda
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom.
| | - Nina F Conzelmann
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany.
| | - Robert M J Jacobs
- Department for Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.
| | - Ralph Maier
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany.
| | - Niels Scheffczyk
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany.
| | - Fajun Zhang
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany.
| | - Frank Schreiber
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
16
|
Kumar S, Saha D, Ray D, Abbas S, Aswal VK. Unusual stability of protein molecules in the presence of multivalent counterions. Phys Rev E 2021; 104:L012603. [PMID: 34412269 DOI: 10.1103/physreve.104.l012603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/08/2021] [Indexed: 12/29/2022]
Abstract
Proteins are known to undergo denaturation and form different phases with varying physicochemical parameters. We report unusual stability of bovine serum albumin protein against commonly used denaturants (temperature and surfactant) in the charged reversal reentrant phase, caused by the multivalent counterions. Unlike monovalent counterions, which promote the denaturants' induced protein unfolding, the unfolding is restricted in the presence of multivalent ions. The observations are beyond the scope of general understanding of protein unfolding and are believed to be governed by ion-ion correlations driven strong condensation of the multivalent ions.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Debasish Saha
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sohrab Abbas
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.,Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
17
|
Ragulskaya A, Begam N, Girelli A, Rahmann H, Reiser M, Westermeier F, Sprung M, Zhang F, Gutt C, Schreiber F. Interplay between Kinetics and Dynamics of Liquid-Liquid Phase Separation in a Protein Solution Revealed by Coherent X-ray Spectroscopy. J Phys Chem Lett 2021; 12:7085-7090. [PMID: 34292744 DOI: 10.1021/acs.jpclett.1c01940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microscopic dynamics of complex fluids in the early stage of spinodal decomposition (SD) is strongly intertwined with the kinetics of structural evolution, which makes a quantitative characterization challenging. In this work, we use X-ray photon correlation spectroscopy to study the dynamics and kinetics of a protein solution undergoing liquid-liquid phase separation (LLPS). We demonstrate that in the early stage of SD, the kinetics relaxation is up to 40 times slower than the dynamics and thus can be decoupled. The microscopic dynamics can be well described by hyper-diffusive ballistic motions with a relaxation time exponentially growing with time in the early stage followed by a power-law increase with fluctuations. These experimental results are further supported by simulations based on the Cahn-Hilliard equation. The established framework is applicable to other condensed matter and biological systems undergoing phase transitions and may also inspire further theoretical work.
Collapse
Affiliation(s)
- Anastasia Ragulskaya
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Hendrik Rahmann
- Department Physik, Universität Siegen, Emmy-Noether-Campus, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Mario Reiser
- Department Physik, Universität Siegen, Emmy-Noether-Campus, Walter-Flex-Strasse 3, 57072 Siegen, Germany
- European X-ray Free-Electron Laser GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Emmy-Noether-Campus, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
18
|
Lenton S, Hervø-Hansen S, Popov AM, Tully MD, Lund M, Skepö M. Impact of Arginine-Phosphate Interactions on the Reentrant Condensation of Disordered Proteins. Biomacromolecules 2021; 22:1532-1544. [PMID: 33730849 PMCID: PMC8045028 DOI: 10.1021/acs.biomac.0c01765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Re-entrant condensation results in the formation of a condensed protein regime between two critical ion concentrations. The process is driven by neutralization and inversion of the protein charge by oppositely charged ions. Re-entrant condensation of cationic proteins by the polyvalent anions, pyrophosphate and tripolyphosphate, has previously been observed, but not for citrate, which has similar charge and size compared to the polyphosphates. Therefore, besides electrostatic interactions, other specific interactions between the polyphosphate ions and proteins must contribute. Here, we show that additional attractive interactions between arginine and tripolyphosphate determine the re-entrant condensation and decondensation boundaries of the cationic, intrinsically disordered saliva protein, histatin 5. Furthermore, we show by small-angle X-ray scattering (SAXS) that polyvalent anions cause compaction of histatin 5, as would be expected based solely on electrostatic interactions. Hence, we conclude that arginine-phosphate-specific interactions not only regulate solution properties but also influence the conformational ensemble of histatin 5, which is shown to vary with the number of arginine residues. Together, the results presented here provide further insight into an organizational mechanism that can be used to tune protein interactions in solution of both naturally occurring and synthetic proteins.
Collapse
Affiliation(s)
- Samuel Lenton
- Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Stefan Hervø-Hansen
- Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Anton M Popov
- BM29 BIOSAXS, European Synchroton Radiation Facility, 71 avenue des Martyrs, Grenoble, Isère 38043, France
| | - Mark D Tully
- BM29 BIOSAXS, European Synchroton Radiation Facility, 71 avenue des Martyrs, Grenoble, Isère 38043, France
| | - Mikael Lund
- Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.,LINXS-Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| | - Marie Skepö
- Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.,LINXS-Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
19
|
Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun 2021; 12:1085. [PMID: 33597515 PMCID: PMC7889641 DOI: 10.1038/s41467-021-21181-9] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/08/2021] [Indexed: 01/31/2023] Open
Abstract
Liquid-liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.
Collapse
|
20
|
Krainer G, Welsh TJ, Joseph JA, Espinosa JR, Wittmann S, de Csilléry E, Sridhar A, Toprakcioglu Z, Gudiškytė G, Czekalska MA, Arter WE, Guillén-Boixet J, Franzmann TM, Qamar S, George-Hyslop PS, Hyman AA, Collepardo-Guevara R, Alberti S, Knowles TPJ. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun 2021; 12:1085. [PMID: 33597515 DOI: 10.1101/2020.05.04.076299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/08/2021] [Indexed: 05/26/2023] Open
Abstract
Liquid-liquid phase separation of proteins underpins the formation of membraneless compartments in living cells. Elucidating the molecular driving forces underlying protein phase transitions is therefore a key objective for understanding biological function and malfunction. Here we show that cellular proteins, which form condensates at low salt concentrations, including FUS, TDP-43, Brd4, Sox2, and Annexin A11, can reenter a phase-separated regime at high salt concentrations. By bringing together experiments and simulations, we demonstrate that this reentrant phase transition in the high-salt regime is driven by hydrophobic and non-ionic interactions, and is mechanistically distinct from the low-salt regime, where condensates are additionally stabilized by electrostatic forces. Our work thus sheds light on the cooperation of hydrophobic and non-ionic interactions as general driving forces in the condensation process, with important implications for aberrant function, druggability, and material properties of biomolecular condensates.
Collapse
Affiliation(s)
- Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Timothy J Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jerelle A Joseph
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Jorge R Espinosa
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Sina Wittmann
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Ella de Csilléry
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Akshay Sridhar
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Giedre Gudiškytė
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Magdalena A Czekalska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka, 44/52 01-224, Warsaw, Poland
| | - William E Arter
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jordina Guillén-Boixet
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Titus M Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany
| | - Seema Qamar
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter St George-Hyslop
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Division of Neurology, Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| | - Rosana Collepardo-Guevara
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, Dresden, Germany.
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, UK.
| |
Collapse
|
21
|
Lin Y, Fichou Y, Longhini AP, Llanes LC, Yin P, Bazan GC, Kosik KS, Han S. Liquid-Liquid Phase Separation of Tau Driven by Hydrophobic Interaction Facilitates Fibrillization of Tau. J Mol Biol 2021; 433:166731. [PMID: 33279579 PMCID: PMC7855949 DOI: 10.1016/j.jmb.2020.166731] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Amyloid aggregation of tau protein is implicated in neurodegenerative diseases, yet its facilitating factors are poorly understood. Recently, tau has been shown to undergo liquid liquid phase separation (LLPS) both in vivo and in vitro. LLPS was shown to facilitate tau amyloid aggregation in certain cases, while being independent of aggregation in other cases. It is therefore important to understand the differentiating properties that resolve this apparent conflict. We report on a model system of hydrophobically driven LLPS induced by high salt concentration (LLPS-HS), and compare it to electrostatically driven LLPS represented by tau-RNA/heparin complex coacervation (LLPS-ED). We show that LLPS-HS promotes tau protein dehydration, undergoes maturation and directly leads to canonical tau fibrils, while LLPS-ED is reversible, remains hydrated and does not promote amyloid aggregation. We show that the nature of the interaction driving tau condensation is a differentiating factor between aggregation-prone and aggregation-independent LLPS.
Collapse
Affiliation(s)
- Yanxian Lin
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, United States
| | - Yann Fichou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Andrew P Longhini
- Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Luana C Llanes
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States; Center for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106, United States
| | - Pengyi Yin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical Engineering, National University of Singapore, 117543, Singapore
| | - Kenneth S Kosik
- Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
22
|
Fries MR, Conzelmann NF, Günter L, Matsarskaia O, Skoda MWA, Jacobs RMJ, Zhang F, Schreiber F. Bulk Phase Behavior vs Interface Adsorption: Specific Multivalent Cation and Anion Effects on BSA Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:139-150. [PMID: 33393312 DOI: 10.1021/acs.langmuir.0c02618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Proteins are ubiquitous and play a critical role in many areas from living organisms to protein microchips. In humans, serum albumin has a prominent role in the foreign body response since it is the first protein which will interact with, e.g., an implant or stent. In this study, we focused on the influence of salts (i.e., different cations (Y3+, La3+) and anions (Cl-, I-) on bovine serum albumin (BSA) in terms of its bulk behavior as well as the role of charges for protein adsorption at the solid-liquid interface in order to understand and control the underlying molecular mechanisms and interactions. This is part of our group's effort to gain a deeper understanding of protein-protein and protein-surface interactions in the presence of multivalent ions. In the bulk, we established two new phase diagrams and found not only multivalent cation-triggered phase transitions, but also a dependence of the protein behavior on the type of anion. The attractive interactions between proteins were observed to increase from Cl- < NO3- < I-, resulting in iodide preventing re-entrant condensation and promoting liquid-liquid phase separation in bulk. Using ellipsometry and a quartz-crystal microbalance with dissipation (QCM-D), we obtained insight into the growth of the protein adsorption layer. Importantly, we found that phase transitions at the substrate can be triggered by certain interface properties, whether they exist in the bulk solution or not. Through the use of a hydrophilic, negatively charged surface (native silica), the direct binding of anions to the interface was prevented. Interestingly, this led to re-entrant adsorption even in the absence of re-entrant condensation in bulk. However, the overall amount of adsorbed protein was enhanced through stronger attractive protein-protein interactions in the presence of iodide salts. These findings illustrate how carefully chosen surface properties and salts can directly steer the binding of anions and cations, which guide protein behavior, thus paving the way for specific/triggered protein-protein, protein-salt, and protein-surface interactions.
Collapse
Affiliation(s)
- Madeleine R Fries
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Nina F Conzelmann
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Luzie Günter
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin (ILL), CS20156, F-38042 Grenoble, France
| | - Maximilian W A Skoda
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, United Kingdom
| | - Robert M J Jacobs
- Department for Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Fajun Zhang
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
| | - Frank Schreiber
- Institute for Applied Physics, University of Tübingen, 72076 Tübingen, Germany
- Center for Light-Matter Interaction, Sensors & Analytics LISA+, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
23
|
Matsarskaia O, Roosen‐Runge F, Schreiber F. Multivalent ions and biomolecules: Attempting a comprehensive perspective. Chemphyschem 2020; 21:1742-1767. [PMID: 32406605 PMCID: PMC7496725 DOI: 10.1002/cphc.202000162] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Ions are ubiquitous in nature. They play a key role for many biological processes on the molecular scale, from molecular interactions, to mechanical properties, to folding, to self-organisation and assembly, to reaction equilibria, to signalling, to energy and material transport, to recognition etc. Going beyond monovalent ions to multivalent ions, the effects of the ions are frequently not only stronger (due to the obviously higher charge), but qualitatively different. A typical example is the process of binding of multivalent ions, such as Ca2+ , to a macromolecule and the consequences of this ion binding such as compaction, collapse, potential charge inversion and precipitation of the macromolecule. Here we review these effects and phenomena induced by multivalent ions for biological (macro)molecules, from the "atomistic/molecular" local picture of (potentially specific) interactions to the more global picture of phase behaviour including, e. g., crystallisation, phase separation, oligomerisation etc. Rather than attempting an encyclopedic list of systems, we rather aim for an embracing discussion using typical case studies. We try to cover predominantly three main classes: proteins, nucleic acids, and amphiphilic molecules including interface effects. We do not cover in detail, but make some comparisons to, ion channels, colloidal systems, and synthetic polymers. While there are obvious differences in the behaviour of, and the relevance of multivalent ions for, the three main classes of systems, we also point out analogies. Our attempt of a comprehensive discussion is guided by the idea that there are not only important differences and specific phenomena with regard to the effects of multivalent ions on the main systems, but also important similarities. We hope to bridge physico-chemical mechanisms, concepts of soft matter, and biological observations and connect the different communities further.
Collapse
Affiliation(s)
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and SocietyMalmö UniversitySweden
- Division of Physical ChemistryLund UniversitySweden
| | | |
Collapse
|
24
|
Banta RA, Collins TW, Curley R, O'Connell J, Young PW, Holmes JD, Flynn EJ. Regulated phase separation in nanopatterned protein-polysaccharide thin films by spin coating. Colloids Surf B Biointerfaces 2020; 190:110967. [DOI: 10.1016/j.colsurfb.2020.110967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
|
25
|
Begam N, Matsarskaia O, Sztucki M, Zhang F, Schreiber F. Unification of lower and upper critical solution temperature phase behavior of globular protein solutions in the presence of multivalent cations. SOFT MATTER 2020; 16:2128-2134. [PMID: 32016274 DOI: 10.1039/c9sm02329a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In globular protein systems, upper critical solution temperature (UCST) behavior is common, but lower critical solution temperature (LCST) phase transitions are rare. In addition, the temperature sensitivity of such systems is usually difficult to tune. Here we demonstrate that the charge state of globular proteins in aqueous solutions can alter their temperature-dependent phase behavior. We show a universal way to tune the effective protein interactions and induce both UCST and LCST-type transitions in the system using trivalent salts. We provide a phase diagram identifying LCST and UCST regimes as a function of protein and salt concentrations. We further propose a model based on an entropy-driven cation binding mechanism to explain the experimental observations.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany.
| | - Olga Matsarskaia
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany.
| | - Michael Sztucki
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany.
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
26
|
Richert ME, Gochev GG, Braunschweig B. Specific Ion Effects of Trivalent Cations on the Structure and Charging State of β-Lactoglobulin Adsorption Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11299-11307. [PMID: 31398284 DOI: 10.1021/acs.langmuir.9b01803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The properties of proteins at interfaces are important to many processes as well as in soft matter materials such as aqueous foam. Particularly, the protein interfacial behavior is strongly linked to different factors like the solution pH or the presence of electrolytes. Here, the nature of the electrolyte ions can significantly modify the interfacial properties of proteins. Therefore, molecular level studies on interfacial structures and charging states are needed. In this work, we addressed the effects of Y3+ and Nd3+ cations on the adsorption of the whey protein β-lactoglobulin (BLG) at air-water interfaces as the function of electrolyte concentration. Both cations caused very similar but dramatic changes at the interface and in the bulk solution. Here, measurements of the electrophoretic mobility and with vibrational sum-frequency generation (SFG) spectroscopy were applied and consistently showed a reversal of the BLG net charge at remarkably low ion concentrations of 30 (bulk) and 40 (interface) μM of Y3+ or Nd3+ for a BLG concentration of 15 μM. SFG spectra of carboxylate stretching vibrations from Asp or Glu residues of interfacial BLG showed significant changes in the resonance frequency, which we associate to specific and efficient binding of Y3+ or Nd3+ ions to the proteins carboxylate groups. Characteristic reentrant condensation for BLG moieties with bound trivalent ions was found in a broad concentration range around the point of zero net charge. The highest colloidal stability of BLG was found for ion concentrations <20 μM and >50 μM. Investigations on macroscopic foams from BLG solutions revealed the existence of structure-property relations between the interfacial charging state and the foam stability. In fact, a minimum in foam stability at 20 μM ion concentration was found when the interfacial net charge was negligible. At this concentration, we propose that the persistent BLG molecules and weakly charged BLG aggregates drive foam stability, while outside the bulk reentrant zone the electrostatic disjoining pressure inside foam lamellae dominates foam stability. Our results provide new information on the charge reversal at the liquid-gas interface of protein/ion dispersions. Therefore, we see our findings as an important step in the clarification of reentrant condensation effects at interfaces and their relevance to foam stability.
Collapse
Affiliation(s)
- Manuela E Richert
- Institute of Physical Chemistry and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 , 48149 Münster , Germany
| | - Georgi G Gochev
- Institute of Physical Chemistry and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 , 48149 Münster , Germany
| | - Björn Braunschweig
- Institute of Physical Chemistry and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster Corrensstraße 28/30 , 48149 Münster , Germany
| |
Collapse
|
27
|
Kumar S, Ray D, Abbas S, Saha D, Aswal VK, Kohlbrecher J. Reentrant phase behavior of nanoparticle solutions probed by small-angle scattering. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|