1
|
Saroj S, Vijayalakshmi U. Structural, morphological and biological assessment of magnetic hydroxyapatite with superior hyperthermia potential for orthopedic applications. Sci Rep 2025; 15:3234. [PMID: 39863634 PMCID: PMC11762292 DOI: 10.1038/s41598-025-87111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth. In this study, iron-doped HA was synthesized using a refluxing-based sol-gel route with varying concentrations of iron (1-9 M%). Samples were analyzed using an X-ray diffractometer (XRD), UV-Vis Spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and Scanning Electron Microscope (SEM). The biological assessment was carried out by hemolytic assay, anti-bacterial activity and in-vitro biocompatibility. XRD data confirmed the evolution of the hexagonal HA crystal structure with the reduction in the crystallinity and the crystallite size. All the characteristic bands were confirmed using FT-IR which also further proved the existence of A-type carbonated apatite. The UV-Vis spectra confirmed the reduction in the band gap energies owing to the substitution of iron. The SEM results showed a change in the shape of the samples with increasing iron concentration. The magnetic behavior of samples also altered from diamagnetic to ferromagnetic behavior due to the doping of iron with enhanced heating efficiency. All the samples were found to be hemocompatible. The antibacterial efficacy was found to be higher for E. coli (gram-negative) bacteria compared to S. aureus (gram-positive) bacteria. Moreover, the superior cell viability of MG-63 (osteoblast-like) cells was observed in Fe-doped HA, attributed to MTT assay which revealed the enhanced cell viability of osteoblast-like cells in the Fe-doped HA. These results strongly emphasize the potential of the developed samples for bone regeneration applications.
Collapse
Affiliation(s)
- Smrithi Saroj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - U Vijayalakshmi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Sahadat Hossain M, Shaikh MAA, Uddin MN, Bashar MS, Ahmed S. β-tricalcium phosphate synthesized in organic medium for controlled release drug delivery application in bio-scaffolds. RSC Adv 2023; 13:26435-26444. [PMID: 37674484 PMCID: PMC10477827 DOI: 10.1039/d3ra04904c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
β-tricalcium phosphate (β-TCP) was synthesized in an organic medium (acetone) to obtain a single-phase product while calcium carbonate (CaCO3) and ortho-phosphoric acid (H3PO4) were the sources of Ca, and P, respectively. The synthesized β-TCP was characterized by employing a number of sophisticated techniques vis. XRD, FTIR, FESEM, VSM and UV-Vis-NIR spectrometry. On the other hand, cytotoxicity, hemolysis, and antimicrobial activity for Gram-negative as well as Gram-positive (E. coli and S. aureus) bacteria were explored using this synthesized sample in powder format. However, to assess the drug loading and releasing profile, these powdered samples were first compressed into disks followed by sintering at 900 °C. Prior to loading the drug, porosity, density, and water absorbance characteristics of the scaffolds were examined in deionized water. Both loading and releasing profiles of the antibiotic (ciprofloxacin) were looked over at various selected time intervals which were continued up to 28 days. The observed results revealed that 2.87% of ciprofloxacin was loaded while 37% of this loaded drug was released within the selected time frame as set in this study. The scaffold was also immersed in SBF solution maintaining identical interim periods for the bioactivity evaluation. Furthermore, all three types of samples (e.g. drug-loaded, drug-released, and SBF-soaked) were characterized by FESEM and EDX while antimicrobial activity (against E. coli, S. typhi, and S. aureus) and efficacy to prevent hemolysis were also investigated. The drug-loaded scaffold presented a larger inhibition zone than the standard for all three types of microbes. Although powdered β-TCP was inactive in killing the Gram-negative bacteria, surprisingly the drug-released scaffold showed an inhibition zone.
Collapse
Affiliation(s)
- Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Md Aftab Ali Shaikh
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
- Department of Chemistry, University of Dhaka Dhaka 1000 Bangladesh
| | - Md Najem Uddin
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Muhammad Shahriar Bashar
- Institute of Fuel Research & Development, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Samina Ahmed
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| |
Collapse
|
3
|
Duraisamy K, Gangadharan A, Martirosyan KS, Sahu NK, Manogaran P, Easwaradas Kreedapathy G. Fabrication of Multifunctional Drug Loaded Magnetic Phase Supported Calcium Phosphate Nanoparticle for Local Hyperthermia Combined Drug Delivery and Antibacterial Activity. ACS APPLIED BIO MATERIALS 2023; 6:104-116. [PMID: 36511628 DOI: 10.1021/acsabm.2c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic calcium phosphate nanoparticles are biocompatible and have attracted much attention as biomaterials for bone tissue engineering and theranostic applications. In this study, we report the fabrication of a biocompatible magnetic nickel ferrite supported fluorapatite nanoparticle as a bone substitute material with hyperthermia potential using a facile wet precipitation approach. The composition and magnetic properties of the sample were analyzed using X-ray diffraction (XRD) and a vibrating sample magnetometer (VSM). The presence of both magnetic (NiFe2O4 and γ-Fe2O3) and fluorapatite phases was identified, and the sample exhibited ferromagnetic behavior with saturation magnetization and coercivity of 3.08 emu/g and 109 Oe, respectively. The fabricated sample achieved the hyperthermia temperature of ∼43 °C under tumor mimic conditions (neglecting Brownian relaxation) in 2.67 min, and the specific loss power (SLP) was estimated to be 898 W/g(Ni+Fe) which is sufficient to prompt irreversible cell apoptosis. Biocompatibility of the synthesized nanoparticle was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay with fibroblast NIH 3T3 and L929 cells. An in vitro drug release experiment was conducted at pH 5 (tumor mimic) and 7.4 (physiological), which revealed a release of 49.8% in the former and 11.6% in the latter pH for 11 days. The prepared sample showed antibacterial activity against S. aureus.
Collapse
Affiliation(s)
| | - Ajithkumar Gangadharan
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas78249-1644, United States
| | - Karen S Martirosyan
- Department of Physics and Astronomy, University of Texas at Rio Grande Valley, Brownsville, Texas78520, United States
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu632014, India
| | - Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu641 046, India
| | | |
Collapse
|
4
|
Functionalized magnetic nanoparticles for treating bone diseases. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
5
|
Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022; 10:1051678. [PMID: 36518978 PMCID: PMC9742444 DOI: 10.3389/fchem.2022.1051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.
Collapse
Affiliation(s)
- Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Soumya Katiyar
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Darshna
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Aditya Anand
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | | |
Collapse
|
6
|
Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:ijms231911352. [PMID: 36232652 PMCID: PMC9569977 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
7
|
Simultaneous Substitution of Fe and Sr in Beta-Tricalcium Phosphate: Synthesis, Structural, Magnetic, Degradation, and Cell Adhesion Properties. MATERIALS 2022; 15:ma15134702. [PMID: 35806825 PMCID: PMC9268321 DOI: 10.3390/ma15134702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022]
Abstract
β-tricalcium phosphate is a promising bone graft substitute material with biocompatibility and high osteoinductivity. However, research on the ideal degradation and absorption for better clinical application remains a challenge. Now, we focus on modifying physicochemical properties and improving biological properties through essential ion co-substitution (Fe and Sr) in β-TCPs. Fe- and Sr-substituted and Fe/Sr co-substituted β-TCP were synthesized by aqueous co-precipitation with substitution levels ranging from 0.2 to 1.0 mol%. The β-TCP phase was detected by X-ray diffraction and Fourier transform infrared spectroscopy. Changes in Ca–O and P–O bond lengths of the co-substituted samples were observed through X-ray photoelectron spectroscopy. The results of VSM represent the M-H graph having a combination of diamagnetic and ferromagnetic properties. A TRIS–HCl solution immersion test showed that the degradation and resorption functions act synergistically on the surface of the co-substituted sample. Cell adhesion tests demonstrated that Fe enhances the initial adhesion and proliferation behavior of hDPSCs. The present work suggests that Fe and Sr co-substitution in β-TCP can be a candidate for promising bone graft materials in tissue engineering fields. In addition, the possibility of application of hyperthermia for cancer treatment can be expected.
Collapse
|
8
|
Kizalaite A, Klimavicius V, Versockiene J, Lastauskiene E, Murauskas T, Skaudzius R, Yokoi T, Kawashita M, Goto T, Sekino T, Zarkov A. Peculiarities of the formation, structural and morphological properties of zinc whitlockite (Ca 18Zn 2(HPO 4) 2(PO 4) 12) synthesized via a phase transformation process under hydrothermal conditions. CrystEngComm 2022. [DOI: 10.1039/d2ce00497f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the present work, the formation of zinc whitlockite via a dissolution–precipitation process was investigated in detail. The influence of medium pH, reaction time, temperature and concentration of precursors on the formation of the material was studied.
Collapse
Affiliation(s)
- Agne Kizalaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Vytautas Klimavicius
- Institute of Chemical Physics, Vilnius University, Sauletekio 3, LT-10257, Vilnius, Lithuania
| | - Justina Versockiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - Egle Lastauskiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| | - Tomas Murauskas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Ramunas Skaudzius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tomoyo Goto
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Sekino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
9
|
Srinivasan B, Kolanthai E, Asthagiri Kumaraswamy NE, Pugazhendhi AS, Catalani LH, Subbaraya NK. Vacancy-Induced Visible Light-Driven Fluorescence in Toxic Ion-Free Resorbable Magnetic Calcium Phosphates for Cell Imaging Applications. ACS APPLIED BIO MATERIALS 2021; 4:3256-3263. [PMID: 35014412 DOI: 10.1021/acsabm.0c01617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multifunctional nanosized particles are very beneficial in the field of biomedicine. Bioactive and highly biocompatible calcium phosphate (CaP) nanoparticles (∼50 nm) exhibiting both superparamagnetic and fluorescence properties were synthesized by incorporating dual ions (Fe3+ and Sr2+) in HAp (hydroxyapatite) [Ca10(PO4)6(OH)2]. Insertion of Fe3+ creates oxygen vacancies at the PO43- site, thereby destabilizing the structure. Thus, in order to maintain the structural stability, Sr2+ has been incorporated. This incorporation of Sr2+ leads to an intense emission at 550 nm. HAp nanoparticles when subjected to thermal treatment (800 °C) transform to β-TCP, exhibiting emission at 710 nm due to the emergence of an intermediate band. Moreover, these nanoparticles exhibit fluorescence in visible light when compared to the other UV and IR fluorescence excitation sources which could damage the tissues. The synthesis involving the combination of ultrasound and microwave techniques resulted in the distribution of Fe3+ in the interstitial sites of CaP, which is responsible for the excellent fluorescent properties. Moreover, thermally treated CaP becomes superparamagnetic, without affecting the desired optical properties. The bioactive, biocompatible, magnetic, and fluorescent properties of this resorbable CaP which is free from toxic heavy metals (Eu, Gd, etc.) could help in overcoming the long-term cytotoxicity. This could also be useful in tracking the location of the nanoparticles during drug delivery and magnetic hyperthermia. The bioactive fluorescent CaP nanoparticle helps in monitoring the bone growth and in addition, it could be employed in cell imaging applications. The in vitro MCF-7 imaging using the nanoparticles after 24 h of uptake at 465 nm evidences the bioimaging capability of the prepared nanoparticles. The reproducibility of the defect level is essential for the defect-induced emission properties. The synthesis of nontoxic fluorescent CaP is highly reproducible with the present synthesis method. Hence, it could be safely employed in various biomedical applications.
Collapse
Affiliation(s)
- Baskar Srinivasan
- Crystal Growth Centre, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Elayaraja Kolanthai
- Departamento de Química Fundamental, Instituto de Química, University of São Paulo, Av. Prof. LineuPrestes, 784, São Paulo 05508-000, Brazil.,Department of Materials Science & Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando 32816, Florida, USA
| | | | - Abinaya Sindu Pugazhendhi
- Departamento de Química Fundamental, Instituto de Química, University of São Paulo, Av. Prof. LineuPrestes, 784, São Paulo 05508-000, Brazil
| | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química, University of São Paulo, Av. Prof. LineuPrestes, 784, São Paulo 05508-000, Brazil
| | | |
Collapse
|
10
|
Thanigai Arul K, Ramana Ramya J, Narayana Kalkura S. Impact of Dopants on the Electrical and Optical Properties of Hydroxyapatite. Biomaterials 2020. [DOI: 10.5772/intechopen.93092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This chapter deals with the effect of alternating electrical current on hydroxyapatite [HAp, Ca10(PO4)6(OH)2] and doped HAp along with their optical response and the processes involved. The dielectric constant, permittivity and ac conductivity were analyzed to have an insight into the surface charge polarization phenomenon. Further, the magnitude and the polarity of the surface charges, microstructure, and phases also play significant role in the cell proliferation and growth on the implants. Besides, the mechanism behind the electrical properties and the healing of bone fracture are discussed. The influence of various dopants on the optical properties of HAp viz., absorbance, transmission, band gaps and defects energy levels are analyzed along with the photoluminescence and excitation independent emission. In the future outlook, the analysis of effect of doping is summarized and its impact on the next generation biomaterials are elucidated.
Collapse
|
11
|
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279:102157. [PMID: 32330734 PMCID: PMC7261203 DOI: 10.1016/j.cis.2020.102157] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States; Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| | - Hamed Arami
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States.
| |
Collapse
|
12
|
E A K N, S B, Martin CA, J RR, A S, V N, B S L, Frank-Kamenetskaya OV, Radhakrishnan S, S NK. A competent bidrug loaded water soluble chitosan derivative for the effective inhibition of breast cancer. Sci Rep 2020; 10:3991. [PMID: 32132583 PMCID: PMC7055325 DOI: 10.1038/s41598-020-60888-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Drug resistance and damage caused to the normal cells are the drawbacks which have limited the use of the existing effective anticancer drugs. Attainment of a steady and extended release by encapsulating dual drugs into biocompatible and biodegradable vehicles is the key to enable the use of these drugs for effective inhibition of cancer. In this study, carboxymethyl chitosan (CMCS), a proficient water-soluble derivative of chitosan has been synthesized using chemical route and used for the delivery of 5-Fluorouracil and doxorubicin individually as well as in combination. Carboxymethylation occuring at -NH2 and OH sites of chitosan, has been confirmed using FTIR. EDX and Fluorescence studies elucidate the encapsulation of 5-Fluorouracil and doxorubicin into CMCS. The capability of CMCS to release the drugs in a more sustained and prolonged manner is evident from the obtained release profiles. About 14.9 µg/ml is enough to cause 50% cell death by creating oxidative stress and effectuating DNA fragmentation. Amidst the existing reports, the uniqueness of this work lies in using this rare coalition of drugs for the suppression of breast cancer and in reducing the side effects of drugs by encapsulating them into CMCS, which is evidenced by the high hemocompatibilty of the samples.
Collapse
Affiliation(s)
- Nivethaa E A K
- Crystal Growth Centre, Anna University, Chennai, 600025, India
| | - Baskar S
- Crystal Growth Centre, Anna University, Chennai, 600025, India
| | | | - Ramana Ramya J
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, 600025, India
| | - Stephen A
- Department of Nuclear Physics, University of Madras, Chennai, 600025, India
| | - Narayanan V
- Department of Inorganic Chemistry, University of Madras, Chennai, 600025, India
| | - Lakshmi B S
- Centre for Biotechnology, Anna University, Chennai, 600025, India
| | - Olga V Frank-Kamenetskaya
- Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Subathra Radhakrishnan
- National foundation for liver research, Global hospitals, Perumbakkam, Chennai, 600100, India
| | | |
Collapse
|