1
|
Jena NR, Shukla PK. Hydroxyl radical-induced C1'-H abstraction reaction of different artificial nucleotides. J Mol Model 2024; 30:330. [PMID: 39269493 DOI: 10.1007/s00894-024-06126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
CONTEXT Recently, a few antiviral drugs viz Molnupiravir (EIDD-1931), Favipiravir, Ribavirin, Sofosbuvir, Galidesivir, and Remdesivir are shown to be beneficial against COVID-19 disease. These drugs bind to the viral RNA single strand to inhibit the virus genome replication. Similarly, recently, some artificial nucleotides, such as P, J, B, X, Z, V, S, and K were proposed to behave as potent antiviral candidates. However, their activity in the presence of the most reactive hydroxyl (OH) radical is not yet known. Here, the possibility of RNA strand break due to the OH radical-induced C1'-hydrogen (H) abstraction reaction of the above molecules (except Remdesivir) is studied in detail by considering their nucleotide conformation. The results are compared with those of the natural RNA nucleotides (G, C, A, and U). Due to low Gibbs barrier-free energy and high exothermicity, all these nucleotides (except Remdesivir) are prone to OH radical-induced C1'-H abstraction reaction. As Remdesivir contains a C1'-CN bond, the OH radical substitution reactions at the CN and C1' sites would likely liberate the catalytically important CN group, thereby downgrading its activity. METHOD Initially, the B3LYP-D3 dispersion-corrected density functional theory method and 6-31 + G* basis set were used to optimize all reactant, transition state, and product complexes in the implicit aqueous medium. Subsequently, the structures of these complexes were further optimized by using the ωB97X-D dispersion-corrected density functional theory method and cc-PVTZ basis set in the aqueous medium. The IEFPCM method was used to model the aqueous medium.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India.
| | - P K Shukla
- Department of Physics, Assam University, Silcharm, 788011, India
| |
Collapse
|
2
|
Jena NR, Shukla PK. Structure and stability of different triplets involving artificial nucleobases: clues for the formation of semisynthetic triple helical DNA. Sci Rep 2023; 13:19246. [PMID: 37935822 PMCID: PMC10630353 DOI: 10.1038/s41598-023-46572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
A triple helical DNA can control gene expression, help in homologous recombination, induce mutations to facilitate DNA repair mechanisms, suppress oncogene formations, etc. However, the structure and function of semisynthetic triple helical DNA are not known. To understand this, various triplets formed between eight artificial nucleobases (P, Z, J, V, B, S, X, and K) and four natural DNA bases (G, C, A, and T) are studied herein by employing a reliable density functional theoretic (DFT) method. Initially, the triple helix-forming artificial nucleobases interacted with the duplex DNA containing GC and AT base pairs, and subsequently, triple helix-forming natural bases (G and C) interacted with artificial duplex DNA containing PZ, JV, BS, and XK base pairs. Among the different triplets formed in the first category, the C-JV triplet is found to be the most stable with a binding energy of about - 31 kcal/mol. Similarly, among the second category of triplets, the Z-GC and V-GC triplets are the most stable. Interestingly, Z-GC and V-GC are found to be isoenergetic with a binding energy of about - 30 kcal/mol. The C-JV, and Z-GC or V-GC triplets are about 12-14 kcal/mol more stable than the JV and GC base pairs respectively. Microsolvation of these triplets in 5 explicit water molecules further enhanced their stability by 16-21 kcal/mol. These results along with the consecutive stacking of the C-JV triplet (C-JV/C-JV) data indicate that the synthetic nucleobases can form stable semisynthetic triple helical DNA. However, consideration of a full-length DNA containing one or more semisynthetic bases or base pairs is necessary to understand the formation of semisynthetic DNA in living cells.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Dumna Airport Road, Khamaria, Jabalpur, 482005, India.
| | - P K Shukla
- Department of Physics, Assam University, Silchar, Assam, 788 011, India
| |
Collapse
|
3
|
Jena NR, Das P, Shukla PK. Complementary base pair interactions between different rare tautomers of the second-generation artificial genetic alphabets. J Mol Model 2023; 29:125. [PMID: 37014428 DOI: 10.1007/s00894-023-05537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
The functionality of a semisynthetic DNA in the biological environment will depend on the base pair nature of its complementary base pairs. To understand this, base pair interactions between complementary bases of recently proposed eight second-generation artificial nucleobases are studied herein by considering their rare tautomeric conformations and a dispersion-corrected density functional theoretic method. It is found that the binding energies of two hydrogen-bonded complementary base pairs are more negative than those of the three hydrogen-bonded base pairs. However, as the former base pairs are endothermic, the semisynthetic duplex DNA would involve the latter base pairs.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India.
| | - P Das
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India
| | - P K Shukla
- Department of Physics, Assam University, Silchar, 788011, India
| |
Collapse
|
4
|
Negi I, Singh B, Singh Mahmi A, Sharma P. Structural Properties of Hachimoji Nucleic Acids and Their Building Blocks: Comparison of Genetic Systems with Four, Six and Eight Alphabets. Chemphyschem 2023; 24:e202200714. [PMID: 36315394 DOI: 10.1002/cphc.202200714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Indexed: 11/07/2022]
Abstract
Expansion of the genetic alphabet is an ambitious goal. A recent breakthrough has led to the eight-base (hachimoji) genetics having canonical and unnatural bases. However, very little is known on the molecular-level features that facilitate the candidature of unnatural bases as genetic alphabets. Here we amalgamated DFT calculations and MD simulations to analyse the properties of the constituents of hachimoji DNA and RNA. DFT reveals the dominant syn conformation for isolated unnatural deoxyribonucleosides and at the 5'-end of oligonucleotides, although an anti/syn mixture is predicted at the nonterminal and 3'-terminal positions. However, isolated ribonucleotides prefer an anti/syn mixture, but mostly prefer anti conformation at the nonterminal positions. Further, the canonical base pairing combinations reveals significant strength, which may facilitate replication of hachimoji DNA. We also identify noncanonical base pairs that can better tolerate the substitution of unnatural pairs in RNA. Stacking strengths of 51 dimers reveals higher average stacking stabilization of dimers of hachimoji bases than canonical bases, which provides clues for choosing energetically stable sequences. A total of 14.4 μs MD simulations reveal the influence of solvent on the properties of hachimoji oligonucleotides and point to the likely fidelity of replication of hachimoji DNA. Our results pinpoint the features that explain the experimentally observed stability of hachimoji DNA.
Collapse
Affiliation(s)
- Indu Negi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Bimaldeep Singh
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Amanpreet Singh Mahmi
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.,Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
5
|
Abstract
To expand the existing genetic letters beyond the natural four nucleotides, such as G, C, A, and T, it is necessary to design robust nucleotides that can not only produce stable and unperturbed DNA but also function naturally in living cells. Although hydrophobic bases, such as d5SICS (2,6-dimethyl-2H-isoquiniline-1-thione) and dNaM (2-methoxy-3-methylnaphthalene) were shown to be replicated in bacterial cells, the d5SICS:dNaM base-pair was found to perturb the structure of the duplex DNA. Therefore, it is necessary to design nucleobases that can form base pairs like the natural G:C and A:T pairs. Here, a reliable dispersion-corrected density functional theory has been used to design several nucleobases that can produce three-hydrogen-bonded base pairs like the G:C pair. In doing so, the Watson-Crick faces of d5SICS and dNaM were modified by replacing the hydrophobic groups with hydrogen bond donors and acceptors. As dNaM contains an unnatural C-glycosidic bond (C-dNaM), it was also modified to contain the natural N-glycosidic bond (N-dNaM). This technique produced 91 new bases (N-d5SICS-X (X = 1-33), C-dNaM-X (X = 1-35), and N-dNaM-X (X = 1-23), where X is the different types of modifications applied to d5SICS and dNaM) and 259 base-pairs. Among these base pairs, 76 base pairs are found to be more stable than the G:C pair. Interestingly, the N-d5SICS-32:C-dNaM-32 and N-d5SICS-32:N-dNaM-20 pairs are found to be the most stable with binding energies of about -28.0 kcal/mol. The base-pair patterns of these pairs are also analogous to that of the G:C pair. Hence, it is proposed that N-d5SICS-32, C-dNaM-32, and N-dNaM-20 would act as efficient new genetic letters to produce stable and unperturbed artificial DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Khamaria, Jabalpur, India
| | - P Das
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Khamaria, Jabalpur, India
| |
Collapse
|
6
|
Jena NR, Pant S, Srivastava HK. Artificially expanded genetic information systems (AEGISs) as potent inhibitors of the RNA-dependent RNA polymerase of the SARS-CoV-2. J Biomol Struct Dyn 2022; 40:6381-6397. [PMID: 33565387 PMCID: PMC7885727 DOI: 10.1080/07391102.2021.1883112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/25/2021] [Indexed: 01/18/2023]
Abstract
The recent outbreak of the SARS-CoV-2 infection has affected the lives and economy of more than 200 countries. The unavailability of virus-specific drugs has created an opportunity to identify potential therapeutic agents that can control the rapid transmission of this pandemic. Here, the mechanisms of the inhibition of the RNA-dependent RNA polymerase (RdRp), responsible for the replication of the virus in host cells, are examined by different ligands, such as Remdesivir (RDV), Remdesivir monophosphate (RMP), and several artificially expanded genetic information systems (AEGISs) including their different sequences by employing molecular docking, MD simulations, and MM/GBSA techniques. It is found that the binding of RDV to RdRp may block the RNA binding site. However, RMP would acquire a partially flipped conformation and may allow the viral RNA to enter into the binding site. The internal dynamics of RNA and RdRp may help RMP to regain its original position, where it may inhibit the RNA-chain elongation reaction. Remarkably, AEGISs are found to obstruct the binding site of RNA. It is shown that dPdZ, a two-nucleotide sequence containing P and Z would bind to RdRp very strongly and may occupy the positions of two nucleotides in the RNA strand, thereby denying access of the substrate-binding site to the viral RNA. Thus, it is proposed that the AEGISs may act as novel therapeutic candidates against the SARS-CoV-2. However, in vivo evaluations of their potencies and toxicities are needed before using them against COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, Madhya Pradesh, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Hemant Kumar Srivastava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Changsari, Guwahati, Assam, India
| |
Collapse
|
7
|
Jena NR. Rare Tautomers of Artificially Expanded Genetic Letters and their Effects on the Base pair Stabilities. Chemphyschem 2022; 23:e202100908. [PMID: 35029036 DOI: 10.1002/cphc.202100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 11/11/2022]
Abstract
To expand the existing genetic letters, it is necessary to design robust nucleotides that can function naturally in living cells. Therefore, it is desirable to examine the roles of recently proposed second-generation artificially expanded genetic letters in producing stable duplex DNA. Here, a reliable dispersion-corrected density functional theory method is used to understand the electronic structures and properties of different rare tautomers of proposed expanded genetic letters and their effects on the base pair stabilities in the duplex DNA. It is found that the rare tautomers are not only stable in the aqueous medium but can also base pair with natural bases to produce stable mispairs. Except for J and V, all the artificial genetic letters are found to produce mispairs that are about 1-7 kcal/mol more stable than their complementary counterparts. They are also appreciably more stable than the naturally occurring G:C, A:T, and G:T pairs. The higher base pair stabilities are found to be mainly because of the polarity of monomers and attractive electrostatic interactions.
Collapse
Affiliation(s)
- N R Jena
- IIITDM Jabalpur, Discipline of Natural Sciences, Dumna Airport Road, Khamaria, India, 482005, Jabalpur, INDIA
| |
Collapse
|
8
|
Jena NR. Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19. Phys Chem Chem Phys 2020; 22:28115-28122. [DOI: 10.1039/d0cp05297c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Base-pair mutations induced by different tautomers of anti-viral drugs are the main reasons for their anti-viral activities.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology
- Design, and Manufacturing
- Khamaria
- India
| |
Collapse
|
9
|
Jena NR. Electron and hole interactions with P, Z, and P:Z and the formation of mutagenic products by proton transfer reactions. Phys Chem Chem Phys 2020; 22:919-931. [DOI: 10.1039/c9cp05367k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Z would act as an electron acceptor and P would capture a hole in the unnatural DNA. The latter process would produce mutagenic products via a proton transfer reaction.
Collapse
Affiliation(s)
- N. R. Jena
- Discipline of Natural Sciences
- Indian Institute of Information Technology, Design, and Manufacturing
- Jabalpur-482005
- India
| |
Collapse
|