1
|
Li Y, Wilhelm MJ, Wu T, Hu XH, Ruiz ON, Dai HL. Quantifying bacterial efflux within subcellular domains of Pseudomonas aeruginosa. Appl Environ Microbiol 2024; 90:e0144724. [PMID: 39475289 DOI: 10.1128/aem.01447-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024] Open
Abstract
Molecular efflux is a mechanism through which bacteria actively expel undesirable substances. This is a crucial line of defense against toxic chemicals in harsh environments. Understanding how efflux works is critical for designing antimicrobial strategies. Though much is already known about efflux proteins, important details about the mechanisms of efflux (e.g., importance of specific subcellular domains and ejection rates) have yet to be experimentally quantified. Herein, we use the nonlinear optical technique, second harmonic light scattering, to simultaneously measure the efflux rates from the periplasm and cytosol of a Gram-negative bacterium. The influence of efflux on the uptake kinetics of a mild antimicrobial, malachite green (MG), by Pseudomonas aeruginosa was quantified. It is observed that efflux primarily occurs from the periplasm and is two orders of magnitude faster than from the cytosol. Efflux pumps activate to maintain MG concentrations in the periplasm below 1 µM, while efflux from the cytosol maintains MG concentration below 0.1 µM. Efflux pumps are shown to saturate when exogenous MG concentrations are greater than 25 µM, while the cytosol efflux function saturates at >15 µM. Finally, efflux pumps can simultaneously eject different compounds, as proven by experiments with both MG and hexane, a known effluxable compound.IMPORTANCEMolecular efflux pumps are a crucial defense mechanism that protects bacteria from an otherwise unchecked influx of toxic molecules present in the extracellular environment. The efflux functions constitute a significant hindrance to antimicrobial efficacy. While much is now known regarding the structure of these channels, knowledge of the influence of efflux in individual subcellular domains and the associated ejection rates is still lacking. Using the nonlinear optical technique, second-harmonic light scattering, we have measured the threshold concentrations for pump activation, saturation concentrations, and efflux rates from both the periplasm and cytosol in living Gram-negative bacteria. The quantified efflux data in the different subcellular compartments not only provide a clear mechanistic understanding but also are critical for developing antimicrobial strategies.
Collapse
Affiliation(s)
- Yujie Li
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Michael J Wilhelm
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Tong Wu
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Xiao-Hua Hu
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Oscar N Ruiz
- Biomaterials Branch, Materials & Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Hai-Lung Dai
- Institute for Membranes and Interfaces, Temple University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Jasmin Finkelmeyer S, Mankel C, Ansay G, Elmanova A, Zechel S, Martin D Hager, Schubert US, Presselt M. Filling the gaps: Introducing plasticizers into π-conjugated OPE-NH 2 Langmuir layers for defect-free anisotropic interfaces and membranes towards unidirectional mass, charge, or energy transfer. J Colloid Interface Sci 2024; 680:1090-1100. [PMID: 39591772 DOI: 10.1016/j.jcis.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
The construction of ultrathin membranes from linearly aligned π-electron systems is advantageous for targeted energy, charge, or mass transfer. The Langmuir-Blodgett (LB) technique enables the creation of such membranes, especially with amphiphilic π-electron systems. However, these systems often aggregate, forming rigid Langmuir monolayers with defects or holes. In this study we introduce plasticizers to effectively address this issue. To create anisotropic membranes, we used an oligo(phenylene ethynylene) derivative (OPE-NH2) as an linear amphiphile and bisphenol A di-tert-butyl ester (BPAE) as a plasticizer. We analyzed surface pressure (mean molecular area) (Π(mma)) isotherms and characterized Langmuir monolayers with Brewster Angle Microscopy (BAM), to determine the optimal miscibility of OPE-NH2 with BPAE. Detailed analysis of hole areas filled was performed through image binarization. We identified an optimal BPAE concentration of 4 mol-% in the OPE-NH2 Langmuir monolayer. Our BAM image evaluation via binarization determined the difference between the mean molecular areas of close-packed Langmuir domains and those quantified via the Π(mma) isotherm. This study presents an automated method for BAM image analysis and a new approach for fabricating defect-free anisotropic molecular monolayers of π-conjugated amphiphiles.
Collapse
Affiliation(s)
| | - Charlotte Mankel
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Genevieve Ansay
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany; The University of Chicago, Chicago, IL 60637, USA.
| | - Anna Elmanova
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany; Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany; Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany.
| | - Stefan Zechel
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Martin D Hager
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany; Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Helmholtz Institute for Polymers in Energy Application Jena (HIPOLE Jena), Lessingstrasse 12-14, 07743 Jena, Germany.
| | - Ulrich S Schubert
- Institute for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany; Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Helmholtz Institute for Polymers in Energy Application Jena (HIPOLE Jena), Lessingstrasse 12-14, 07743 Jena, Germany.
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany; Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745 Jena, Germany; Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany.
| |
Collapse
|
3
|
Salahshoori I, Wang Q, Nobre MAL, Mohammadi AH, Dawi EA, Khonakdar HA. Molecular simulation-based insights into dye pollutant adsorption: A perspective review. Adv Colloid Interface Sci 2024; 333:103281. [PMID: 39214024 DOI: 10.1016/j.cis.2024.103281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Growing concerns about environmental pollution have highlighted the need for efficient and sustainable methods to remove dye contamination from various ecosystems. In this context, computational methods such as molecular dynamics (MD), Monte Carlo (MC) simulations, quantum mechanics (QM) calculations, and machine learning (ML) methods are powerful tools used to study and predict the adsorption processes of dyes on various adsorbents. These methods provide detailed insights into the molecular interactions and mechanisms involved, which can be crucial for designing efficient adsorption systems. MD simulations, detailing molecular arrangements, predict dyes' adsorption behaviour and interaction energies with adsorbents. They simulate the entire adsorption process, including surface diffusion, solvent layer penetration, and physisorption. QM calculations, especially density functional theory (DFT), determine molecular structures and reactivity descriptors, aiding in understanding adsorption mechanisms. They identify stable adsorption configurations and interactions like hydrogen bonding and electrostatic forces. MC simulations predict equilibrium properties and adsorption energies by sampling molecular configurations. ML methods have proven highly effective in predicting and optimizing dye adsorption processes. These models offer significant advantages over traditional methods, including higher accuracy and the ability to handle complex datasets. These methods optimize adsorption conditions, clarify adsorbent functionalization roles, and predict dye removal efficiency under various conditions. This research explores MD, MC, QM, and ML approaches to connect molecular interactions with macroscopic adsorption phenomena. Probing these techniques provides insights into the dynamics and energetics of dye pollutants on adsorption surfaces. The findings will aid in developing and optimizing new materials for dye removal. This review has significant implications for environmental remediation, offering a comprehensive understanding of adsorption at various scales. Merging microscopic data with macroscopic observations enhances knowledge of dye pollutant adsorption, laying the groundwork for efficient, sustainable removal technologies. Addressing the growing challenges of ecosystem protection, this study contributes to a cleaner, more sustainable future.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
| | - Qilin Wang
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, 2007, Australia
| | - Marcos A L Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| | - Elmuez A Dawi
- College of Humanities and Sciences, Department of Mathematics, and Science, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran
| |
Collapse
|
4
|
Blake MJ, Page EF, Smith ME, Calhoun TR. Miltefosine impacts small molecule transport in Gram-positive bacteria. RSC Chem Biol 2024; 5:981-988. [PMID: 39363965 PMCID: PMC11446237 DOI: 10.1039/d4cb00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 10/05/2024] Open
Abstract
Miltefosine (MLT) is an alkylphosphocholine with clinical success as an anticancer and antiparasitic drug. Although the mechanism of action of MLT is highly debated, the interaction of MLT with the membrane, specifically lipid rafts of eukaryotes, is well-documented. Recent reports suggest MLT impacts the functional membrane microdomains in bacteria - regions of the membrane structurally and functionally similar to lipid rafts. There have been conflicting reports, however, as to whether MLT impacts the overall fluidity of cellular plasma membranes. Here, we apply steady-state fluorescence techniques, generalized polarization of laurdan and anisotropy of diphenylhexatriene, to discern how MLT impacts the global ordering and lipid packing of Staphylococcus aureus membranes. Additionally, we investigate how the transport of a range of small molecules is impacted by MLT for S. aureus and Bacillus subtilis by employing time-resolved second harmonic scattering. Overall, we observe MLT does not have an influence on the overall ordering and packing of S. aureus membranes. Additionally, we show that the transport of small molecules across the membrane can be significantly altered by MLT - although this is not the case for all molecules studied. The results presented here illustrate the potential use of MLT as an adjuvant to assist in the delivery of drug molecules in bacteria.
Collapse
|
5
|
Babayode DA, Peterson SC, Haber LH. Size-dependent growth dynamics of silver-gold core-shell nanoparticles monitored by in situ second harmonic generation and extinction spectroscopy. J Chem Phys 2024; 161:084710. [PMID: 39193945 DOI: 10.1063/5.0217901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
The in situ growth dynamics of colloidal silver-gold core-shell (Ag@Au CS) nanoparticles (NPs) are studied using time-dependent second harmonic generation (SHG) and extinction spectroscopy. Four sequential additions of chloroauric acid, sodium citrate, and hydroquinone are added to a silver nanoparticle solution to form a gold shell around a 45 nm silver core under different reaction conditions, resulting in final sizes ranging from 80 to 125 nm in diameter. In the first addition, a bumpy, urchin-like surface morphology is produced, while the second, third, and fourth additions provide additional nanoparticle growth with the surface morphology becoming more smooth and uniform, as shown using transmission electron microscopy measurements. The in situ extinction spectra increase in intensity for each addition, where blue-shifting and spectral narrowing are observed as the Ag@Au CS NPs grow in size. The extinction spectra are compared to Mie theory simulations, showing general agreement at later stages of the reactions for smooth CS surfaces. The in situ SHG signal is dominated by surface-enhanced plasmonic hotspots at the early stages of the shell growth, followed by gradual decreases in signal as the surface becomes more smooth. Two-photon fluorescence is also monitored during the CS growth, showing complementary information for comparisons to the extinction and SHG results. The holistic study of the synthesis and characterization of Ag@Au CS nanoparticles using in situ SHG spectroscopy, extinction spectroscopy, and Mie theory simulations allows for a comprehensive analysis of the complex growth dynamics occurring at the nanoscale for developing optimized plasmonic nanomaterial properties.
Collapse
Affiliation(s)
- Daniel A Babayode
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Stena C Peterson
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Louis H Haber
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
6
|
Chen S, Liu Z, Li B, Hou Y, Peng Y, Li J, Yuan Q, Gan W. Probing the structural evolution on the surface of cardiolipin vesicles with an amphiphilic second harmonic generation and fluorescence probe. J Chem Phys 2024; 161:014705. [PMID: 38949588 DOI: 10.1063/5.0211845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024] Open
Abstract
Investigating the influence of the ambient chemical environment on molecular behaviors in liposomes is crucial for understanding and manipulating cellular vitality as well as the capabilities of lipid drug carriers in various environments. Here, we designed and synthesized a second harmonic generation (SHG) and fluorescence probe molecule called Pyr-Py+-N+ (PPN), which possesses membrane-targeting capability. We employed PPN to investigate the response of lipid vesicles composed of cardiolipin to the presence of exogenous salt. The kinetic behaviors, including the adsorption and embedding of PPN on the surface of small unilamellar vesicles (SUVs) composed of cardiolipin, were analyzed. The response of the SUVs to the addition of NaCl was also monitored. A rapid decrease in vesicle size can be evidenced through the rapid drop in SHG emission originating from PPN located on the vesicle surface.
Collapse
Affiliation(s)
- Shujiao Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Zhongcheng Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Yi Hou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Yingying Peng
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
7
|
Xu B, Li J, Zhang S, Zeb J, Chen S, Yuan Q, Gan W. The Transport of Charged Molecules across Three Lipid Membranes Investigated with Second Harmonic Generation. Molecules 2023; 28:molecules28114330. [PMID: 37298807 DOI: 10.3390/molecules28114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Subtle variations in the structure and composition of lipid membranes can have a profound impact on their transport of functional molecules and relevant cell functions. Here, we present a comparison of the permeability of bilayers composed of three lipids: cardiolipin, DOPG (1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)). The adsorption and cross-membrane transport of a charged molecule, D289 (4-(4-diethylaminostyry)-1-methyl-pyridinium iodide), on vesicles composed of the three lipids were monitored by second harmonic generation (SHG) scattering from the vesicle surface. It is revealed that structural mismatching between the saturated and unsaturated alkane chains in POPG leads to relatively loose packing structure in the lipid bilayers, thus providing better permeability compared to unsaturated lipid bilayers (DOPG). This mismatching also weakens the efficiency of cholesterol in rigidifying the lipid bilayers. It is also revealed that the bilayer structure is somewhat disturbed by the surface curvature in small unilamellar vesicles (SUVs) composed of POPG and the conical structured cardiolipin. Such subtle information on the relationship between the lipid structure and the molecular transport capability of the bilayers may provide clues for drug development and other medical and biological studies.
Collapse
Affiliation(s)
- Baomei Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shuai Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Johar Zeb
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shunli Chen
- Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
8
|
Blake MJ, Castillo HB, Curtis AE, Calhoun TR. Facilitating flip-flop: Structural tuning of molecule-membrane interactions in living bacteria. Biophys J 2023; 122:1735-1747. [PMID: 37041744 PMCID: PMC10209030 DOI: 10.1016/j.bpj.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
The first barrier that a small molecule must overcome before trespassing into a living cell is the lipid bilayer surrounding the intracellular content. It is imperative, therefore, to understand how the structure of a small molecule influences its fate in this region. Through the use of second harmonic generation, we show how the differing degrees of ionic headgroups, conjugated system, and branched hydrocarbon tail disparities of a series of four styryl dye molecules influence the propensity to "flip-flop" or to be further organized in the outer leaflet by the membrane. We show here that initial adsorption experiments match previous studies on model systems; however, more complex dynamics are observed over time. Aside from probe molecule structure, these dynamics also vary between cell species and can deviate from trends reported based on model membranes. Specifically, we show here that the membrane composition is an important factor to consider for headgroup-mediated small-molecule dynamics. Overall, the findings presented here on how structural variability of small molecules impacts their initial adsorption and eventual destinations within membranes in the context of living cells could have practical applications in antibiotic and drug adjuvant design.
Collapse
Affiliation(s)
- Marea J Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Hannah B Castillo
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Anna E Curtis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Tessa R Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
9
|
Page EF, Blake MJ, Foley GA, Calhoun TR. Monitoring membranes: The exploration of biological bilayers with second harmonic generation. CHEMICAL PHYSICS REVIEWS 2022; 3:041307. [PMID: 36536669 PMCID: PMC9756348 DOI: 10.1063/5.0120888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Nature's seemingly controlled chaos in heterogeneous two-dimensional cell membranes stands in stark contrast to the precise, often homogeneous, environment in an experimentalist's flask or carefully designed material system. Yet cell membranes can play a direct role, or serve as inspiration, in all fields of biology, chemistry, physics, and engineering. Our understanding of these ubiquitous structures continues to evolve despite over a century of study largely driven by the application of new technologies. Here, we review the insight afforded by second harmonic generation (SHG), a nonlinear optical technique. From potential measurements to adsorption and diffusion on both model and living systems, SHG complements existing techniques while presenting a large exploratory space for new discoveries.
Collapse
Affiliation(s)
- Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Marea J. Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Grant A. Foley
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Tessa R. Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
10
|
Influence of Phase Transitions on Diffusive Molecular Transport Across Biological Membranes. Angew Chem Int Ed Engl 2022; 61:e202205608. [DOI: 10.1002/anie.202205608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/07/2022]
|
11
|
Wu T, Wilhelm MJ, Ma J, Li Y, Wu Y, Dai HL. Influence of Phase Transitions on Diffusive Molecular Transport Across Biological Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tong Wu
- Temple University Department of Chemistry UNITED STATES
| | - Michael J. Wilhelm
- Temple University Department of Chemistry 1901 N. 13th Street 19122 Philadelphia UNITED STATES
| | - Jianqiang Ma
- Temple University Department of Chemistry UNITED STATES
| | - Yujie Li
- Temple University Department of Chemistry UNITED STATES
| | - Yuhao Wu
- Temple University Department of Chemistry UNITED STATES
| | - Hai-Lung Dai
- Temple University Department of Chemistry UNITED STATES
| |
Collapse
|
12
|
Nasrollahpour M, Vafaee M, Razzaghi S. Structural and Dynamical Properties of Palmitoyl-Oleoyl Phosphatidylserine Lipid Nanotubes Containing Cholesterols and PEGylated Dioleoyl Phosphatidylethanolamine: A Coarse-Grained Molecular Dynamics Simulation. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Abstract
Indole signaling in bacteria plays an important role in antibiotic resistance, persistence, and tolerance. Here, we used the nonlinear optical technique, second-harmonic light scattering (SHS), to examine the influence of exogenous indole on the bacterial uptake of the antimicrobial quaternary ammonium cation (qac), malachite green. The transport rates of the antimicrobial qac across the individual membranes of Escherichia coli and Pseudomonas aeruginosa, as well as liposomes composed of the polar lipid extract of E. coli, were directly measured using time-resolved SHS. Whereas exogenous indole was shown to induce a 2-fold increase in the transport rate of the qac across the cytoplasmic membranes of the wild-type bacteria, it had no influence on a knockout strain of E. coli lacking the tryptophan-specific transport protein (Δmtr). Likewise, indole did not affect the transport rate of the qac diffusing across the liposome membrane. Our findings suggest that indole increases the bacterial uptake of antimicrobials through an interaction with the Mtr permease.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael J. Wilhelm
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Yujie Li
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Jianqiang Ma
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
14
|
Kumal RR, Wimalasiri PN, Servis MJ, Uysal A. Thiocyanate Ions Form Antiparallel Populations at the Concentrated Electrolyte/Charged Surfactant Interface. J Phys Chem Lett 2022; 13:5081-5087. [PMID: 35653184 DOI: 10.1021/acs.jpclett.2c00934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anions play significant roles in the separation of lanthanides and actinides. The molecular-scale details of how these anions behave at aqueous interfaces are not well understood, especially at high ionic strengths. Here, we describe the interfacial structure of thiocyanate anions at a soft charged interface up to 5 M bulk concentration with combined classical and phase-sensitive vibrational sum frequency generation (PS-VSFG) spectroscopy and molecular dynamics (MD) simulations. At low concentrations thiocyanate ions are mostly oriented with their sulfur end pointing toward the charged surfactants. The VSFG signal reaches a plateau at around 100 mM bulk concentration, followed by significant changes above 1 M. At high concentrations a new thiocyanate population emerges with their sulfur end pointing toward the bulk liquid. The -CN stretch frequency is different for up and down oriented SCN- ions, indicating different coordination environments. These results provide key molecular-level insights for the interfacial behavior of complex anions in highly concentrated solutions.
Collapse
Affiliation(s)
- Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Pubudu N Wimalasiri
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael J Servis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
15
|
Hou Y, Xu B, Chen SL, Gan W, Yuan Q, Lin X. Understanding the different cross-membrane transport kinetics of two charged molecules on the DOPG lipid surface with second harmonic generation and MD simulation. SOFT MATTER 2022; 18:4305-4314. [PMID: 35620962 DOI: 10.1039/d2sm00167e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A clear physical picture of the dynamic behavior of molecules on the surface of the lipid membrane is highly desired and has attracted great attention from researchers. In this study, a step forward in this direction based on previous studies was presented with second harmonic generation (SHG) and molecular dynamic (MD) simulation. Specifically, details on the orientation flipping and cross-membrane transport of two charged molecules, 4-(4-diethylaminostyry)-1-methyl-pyridinium iodide (D289) and malachite green (MG), on the surface of 2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG) lipids were presented. Firstly, the orientation flipping of the two molecules on the surface of lipids before their cross-membrane transport was confirmed by the MD simulation. Then, the concentration dependent rate of the cross membrane transport for MG/D289 was analyzed. It was found that a simplified model could satisfactorily interpret the faster cross-membrane transport of MG under higher bulk concentrations. A different concentration dependent dynamics was observed with D289 and the reason behind it was also discussed. With this investigation, the surface structures and dynamics of D289 and MG on the DOPG lipid surface were clearly presented.
Collapse
Affiliation(s)
- Yi Hou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| | - Baomei Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| | - Shun-Li Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
| | - Xi Lin
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology(Shenzhen), University Town, Shenzhen 518055, China.
| |
Collapse
|
16
|
Dikkumbura A, Aucoin AV, Ali RO, Dalier A, Gilbert DW, Schneider GJ, Haber LH. Influence of Acetaminophen on Molecular Adsorption and Transport Properties at Colloidal Liposome Surfaces Studied by Second Harmonic Generation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3852-3859. [PMID: 35298170 PMCID: PMC8969770 DOI: 10.1021/acs.langmuir.2c00086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Time-resolved second harmonic generation (SHG) spectroscopy is used to investigate acetaminophen (APAP)-induced changes in the adsorption and transport properties of malachite green isothiocyanate (MGITC) dye to the surface of unilamellar 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes in an aqueous colloidal suspension. The adsorption of MGITC to DOPC liposome nanoparticles in water is driven by electrostatic and dipole-dipole interactions between the positively charged MGITC molecules and the zwitterionic phospholipid membranes. The SHG intensity increases as the added MGITC dye concentration is increased, reaching a maximum as the MGITC adsorbate at the DOPC bilayer interface approaches a saturation value. The experimental adsorption isotherms are fit using the modified Langmuir model to obtain the adsorption free energies, adsorption equilibrium constants, and the adsorbate site densities to the DOPC liposomes both with and without APAP. The addition of APAP is shown to increase MGITC adsorption to the liposome interface, resulting in a larger adsorption equilibrium constant and a higher adsorption site density. The MGITC transport times are also measured, showing that APAP decreases the transport rate across the DOPC liposome bilayer, especially at higher MGITC concentrations. Studying molecular interactions at the colloidal liposome interface using SHG spectroscopy provides a detailed foundation for developing potential liposome-based drug-delivery systems.
Collapse
Affiliation(s)
- Asela
S. Dikkumbura
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandra V. Aucoin
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Rasidah O. Ali
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Aliyah Dalier
- Southeastern
Louisiana University, Hammond, Louisiana 70402, United States
| | - Dylan W. Gilbert
- Southeastern
Louisiana University, Hammond, Louisiana 70402, United States
| | - Gerald J. Schneider
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department
of Physics and Astronomy, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Louis H. Haber
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
17
|
Ali RF, Gates BD. Lithium niobate particles with a tunable diameter and porosity for optical second harmonic generation. RSC Adv 2021; 12:822-833. [PMID: 35425117 PMCID: PMC8979055 DOI: 10.1039/d1ra07216a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023] Open
Abstract
Uniform, porous particles of lithium niobate (LiNbO3) can be used as contrast agents in bioimaging, drug delivery carriers, nonlinear optical emitters, biosensors, photocatalysts and electrode materials in lithium-ion batteries. In this article, we introduce a hydrothermal method to prepare uniform, mesoporous LiNbO3 particles with a tunable diameter and porosity. These properties are each tuned by adjusting the reaction times of the hydrothermal process. This approach forms mesoporous LiNbO3 particles without the addition of organic additives (e.g., surfactants) or hard templates (e.g., silica). Formation of these LiNbO3 particles proceeds through an aqueous sol-gel reaction in which niobium hydroxide species are generated in situ and undergo a condensation reaction in the presence of lithium hydroxide to form a colloidal solution. A hydrothermal reaction using this solution resulted in the formation of uniform, solid, and semi-crystalline particles. A post-calcination step induces crystallinity in the product and transforms the particles into mesoporous materials composed of a rhombohedral LiNbO3 phase. An increase in reaction time results in an increase in the diameter of these particles from 580 to 1850 nm, but also decreases their porosity. These LiNbO3 particles were active towards second harmonic generation (SHG), and their SHG response resembled that of larger crystals of rhombohedral LiNbO3. This work also offers a viable strategy for manufacturing other materials (e.g., tantalates, titanates, niobates) with tunable dimensions and porosity that enable a broad range of applications in photonics, energy, and catalysis.
Collapse
Affiliation(s)
- Rana Faryad Ali
- Department of Chemistry and 4D LABS, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Byron D Gates
- Department of Chemistry and 4D LABS, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| |
Collapse
|
18
|
Xu B, Chen SL, Zhang Y, Li B, Yuan Q, Gan W. Evaluating the cross-membrane dynamics of a charged molecule on lipid films with different surface curvature. J Colloid Interface Sci 2021; 610:376-384. [PMID: 34923275 DOI: 10.1016/j.jcis.2021.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
Does the curvature of a phospholipid membrane influence the permeability of the lipid bilayers? This is a question of great importance yet hard to answer. In this work the permeability of a positively charged rod like probing molecule (D289 dye) on the bilayers of DOPG lipid vesicles was investigated using angle resolved second harmonic generation method. It was revealed that the permeability of D289 on the surface of small vesicles with ∼ 100 nm diameter was notably lower than that on giant vesicles with ∼ 1000 nm diameter. With the increasing of temperature or the introducing of dimethyl sulfoxide (DMSO) in the solutions, the D289 permeability of the lipid bilayers was notably enhanced as expected, on both the small and the giant vesicles. Still, the D289 permeability of the lipid film with more curvature is lower than the relatively flat film in all these cases. This work demonstrated a general protocol for the investigating of surface permeability of lipid films with various curvature.
Collapse
Affiliation(s)
- Baomei Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Shun-Li Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Yiru Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
19
|
Dikkumbura A, Hamal P, Chen M, Babayode DA, Ranasinghe JC, Lopata K, Haber LH. Growth Dynamics of Colloidal Silver-Gold Core-Shell Nanoparticles Studied by In Situ Second Harmonic Generation and Extinction Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:25615-25623. [PMID: 34868446 PMCID: PMC8631735 DOI: 10.1021/acs.jpcc.1c06094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/29/2021] [Indexed: 05/11/2023]
Abstract
The in situ growth dynamics of colloidal silver-gold core-shell (Ag@Au CS) nanoparticles (NPs) in water are monitored in a stepwise synthesis approach using time-dependent second harmonic generation (SHG) and extinction spectroscopy. Three sequential additions of chloroauric acid, sodium citrate, and hydroquinone are added to the silver nanoparticle solution to grow a gold shell around a silver core. The first addition produces a stable urchin-like surface morphology, while the second and third additions continue to grow the gold shell thickness as the surface becomes more smooth and uniform, as determined using transmission electron microscopy. The extinction spectra after each addition are compared to finite-difference time-domain (FDTD) calculations, showing large deviations for the first and second additions due to the bumpy surface morphology and plasmonic hotspots while showing general agreement after the third addition reaches equilibrium. The in situ SHG signal is dominated by the NP surface, providing complementary information on the growth time scales due to changes to the surface morphology. This combined approach of synthesis and characterization of Ag@Au CS nanoparticles with in situ SHG spectroscopy, extinction spectroscopy, and FDTD calculations provides a detailed foundation for investigating complex colloidal nanoparticle growth mechanisms and dynamics in developing enhanced plasmonic nanomaterial technologies.
Collapse
Affiliation(s)
- Asela
S. Dikkumbura
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Prakash Hamal
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Min Chen
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel A. Babayode
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jeewan C. Ranasinghe
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth Lopata
- Center
for Computation and Technology, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Louis H. Haber
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
20
|
Dai X, Chen L, Liao Y, Sheng M, Qu Q, Shi Y, Shi X. Formulation design and mechanism study of hydrogel based on computational pharmaceutics theories. J Mol Graph Model 2021; 110:108051. [PMID: 34715467 DOI: 10.1016/j.jmgm.2021.108051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022]
Abstract
Formulation design and mechanism study of the drug delivery system (DDS) is an important but difficult subject in pharmaceutical research. The study of formulation factors is the most time- and labor-consuming work of formulation design. In this paper, a multiscale computational pharmaceutics strategy was developed to guide the systematic study of formulation factors of a typical polymer-based DDS, hydrogel, and further to guide the formulation design. According to the strategy, the combination of solubility parameter (δ) and diffusion coefficient (D) calculated by the AA-MD simulation was suggested as the general evaluation method for the matrix screening of the hydrogels at the pre-formulation stage. At the formulation design stage, the CG-MD simulation method was suggested to predict the morphology and drug-releasing behavior of the hydrogels under different formulation factors. The influence mechanism can be explained by the combination of multiple parameters, such as the microstructure diagram, the radius of gyration (Rg), the radial distribution function (RDF), and the free diffusion volume (Vdiffusion). The simulation results are in good agreement with the in vitro release experiment, indicating that the strategy has good applicability.
Collapse
Affiliation(s)
- Xingxing Dai
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Liping Chen
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Yuyao Liao
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Mengke Sheng
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Qingsong Qu
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Yanshuang Shi
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China
| | - Xinyuan Shi
- Beijing University of Chinese Medicine, No. 11 of North 3rd Ring East Road, Chaoyang District, Beijing, 100029, China; Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, 100029, China.
| |
Collapse
|
21
|
Hamal P, Subasinghege Don V, Nguyenhuu H, Ranasinghe JC, Nauman JA, McCarley RL, Kumar R, Haber LH. Influence of Temperature on Molecular Adsorption and Transport at Liposome Surfaces Studied by Molecular Dynamics Simulations and Second Harmonic Generation Spectroscopy. J Phys Chem B 2021; 125:10506-10513. [PMID: 34495664 PMCID: PMC8474114 DOI: 10.1021/acs.jpcb.1c04263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A fundamental understanding of the kinetics and thermodynamics of chemical interactions at the phospholipid bilayer interface is crucial for developing potential drug-delivery applications. Here we use molecular dynamics (MD) simulations and surface-sensitive second harmonic generation (SHG) spectroscopy to study the molecular adsorption and transport of a small organic cation, malachite green (MG), at the surface of 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) liposomes in water at different temperatures. The temperature-dependent adsorption isotherms, obtained by SHG measurements, provide information on adsorbate concentration, free energy of adsorption, and associated changes in enthalpy and entropy, showing that the adsorption process is exothermic, resulting in increased overall entropy. Additionally, the molecular transport kinetics are found to be more rapid under higher temperatures. Corresponding MD simulations are used to calculate the free energy profiles of the adsorption and the molecular orientation distributions of MG at different temperatures, showing excellent agreement with the experimental results.
Collapse
Affiliation(s)
- Prakash Hamal
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Visal Subasinghege Don
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Huy Nguyenhuu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Jeewan C Ranasinghe
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Julia A Nauman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Robin L McCarley
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Revati Kumar
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| | - Louis H Haber
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, United States
| |
Collapse
|
22
|
Observing the structural variations on binary complex vesicle surfaces and the influence on molecular transportation. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Wilhelm MJ, Sharifian Gh M, Wu T, Li Y, Chang CM, Ma J, Dai HL. Determination of bacterial surface charge density via saturation of adsorbed ions. Biophys J 2021; 120:2461-2470. [PMID: 33932437 DOI: 10.1016/j.bpj.2021.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 01/17/2023] Open
Abstract
Bacterial surface charge is a critical characteristic of the cell's interfacial physiology that influences how the cell interacts with the local environment. A direct, sensitive, and accurate experimental technique capable of quantifying bacterial surface charge is needed to better understand molecular adaptations in interfacial physiology in response to environmental changes. We introduce here the method of second-harmonic light scattering (SHS), which is capable of detecting the number of molecular ions adsorbed as counter charges on the exterior bacterial surface, thereby providing a measure of the surface charge. In this first demonstration, we detect the small molecular cation, malachite green, electrostatically adsorbed on the surface of representative strains of Gram-positive and Gram-negative bacteria. Surprisingly, the SHS-deduced molecular transport rates through the different cellular ultrastructures are revealed to be nearly identical. However, the adsorption saturation densities on the exterior surfaces of the two bacteria were shown to be characteristically distinct. The negative charge density of the lipopolysaccharide coated outer surface of Gram-negative Escherichia coli (6.6 ± 1.3 nm-2) was deduced to be seven times larger than that of the protein surface layer of Gram-positive Lactobacillus rhamnosus (1.0 ± 0.2 nm-2). The feasibility of SHS-deduced bacterial surface charge density for Gram-type differentiation is presented.
Collapse
Affiliation(s)
- Michael J Wilhelm
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania.
| | | | - Tong Wu
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - Yujie Li
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - Chia-Mei Chang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - Jianqiang Ma
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Wang Y. Liposome as a delivery system for the treatment of biofilm-mediated infections. J Appl Microbiol 2021; 131:2626-2639. [PMID: 33650748 DOI: 10.1111/jam.15053] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Biofilm formation by pathogenic microorganisms has been a tremendous challenge for antimicrobial therapies due to various factors. The biofilm matrix sequesters bacterial cells from the exterior environment and therefore prevents antimicrobial agents from reaching the interior. In addition, biofilm surface extracellular polymeric substances can absorb antimicrobial agents and thus reduce their bioavailability. To conquer these protection mechanisms, liposomes have been developed into a drug delivery system for antimicrobial agents against biofilm-mediated infections. The unique characteristics of liposomes, including versatility for cargoes, target-specificity, nonimmunogenicity, low toxicity, and biofilm matrix-/cell membrane-fusogenicity, remarkably improve the effectiveness of antimicrobial agents and minimize recurrence of infections. This review summarizes current development of liposomal carriers for biofilm therapeutics, presents evidence in their practical applications and discusses their potential limitations.
Collapse
Affiliation(s)
- Y Wang
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
25
|
Boudjema L, Aarrass H, Assaf M, Morille M, Martin-Gassin G, Gassin PM. PySHS: Python Open Source Software for Second Harmonic Scattering. J Chem Inf Model 2020; 60:5912-5917. [PMID: 33085456 DOI: 10.1021/acs.jcim.0c00789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The PySHS package is a new python open source software tool which simulates the second harmonic scattering (SHS) of different kinds of colloidal nano-objects in various experimental configurations. This package is able to compute polarizations resolved at a fixed scattered angle or angular distribution for different polarization configurations. This article presents the model implemented in the PySHS software and gives some computational examples. A comparison between computational results and experimental data concerning molecular dye intercalated inside liposomes membrane is presented to illustrate the possibilities with PySHS.
Collapse
Affiliation(s)
- Lotfi Boudjema
- ICGM, ENSCM, CNRS, Univ. Montpellier, 34095 Montpellier Cedex 5, France
| | - Hanna Aarrass
- ICGM, ENSCM, CNRS, Univ. Montpellier, 34095 Montpellier Cedex 5, France
| | - Marwa Assaf
- ICGM, ENSCM, CNRS, Univ. Montpellier, 34095 Montpellier Cedex 5, France
| | - Marie Morille
- ICGM, ENSCM, CNRS, Univ. Montpellier, 34095 Montpellier Cedex 5, France
| | | | | |
Collapse
|
26
|
Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front Chem 2020; 7:872. [PMID: 31998680 PMCID: PMC6965326 DOI: 10.3389/fchem.2019.00872] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Many nanotechnology-based antimicrobials and antimicrobial-delivery-systems have been developed over the past decades with the aim to provide alternatives to antibiotic treatment of infectious-biofilms across the human body. Antimicrobials can be loaded into nanocarriers to protect them against de-activation, and to reduce their toxicity and potential, harmful side-effects. Moreover, antimicrobial nanocarriers such as micelles, can be equipped with stealth and pH-responsive features that allow self-targeting and accumulation in infectious-biofilms at high concentrations. Micellar and liposomal nanocarriers differ in hydrophilicity of their outer-surface and inner-core. Micelles are self-assembled, spherical core-shell structures composed of single layers of surfactants, with hydrophilic head-groups and hydrophobic tail-groups pointing to the micellar core. Liposomes are composed of lipids, self-assembled into bilayers. The hydrophilic head of the lipids determines the surface properties of liposomes, while the hydrophobic tail, internal to the bilayer, determines the fluidity of liposomal-membranes. Therefore, whereas micelles can only be loaded with hydrophobic antimicrobials, hydrophilic antimicrobials can be encapsulated in the hydrophilic, aqueous core of liposomes and hydrophobic or amphiphilic antimicrobials can be inserted in the phospholipid bilayer. Nanotechnology-derived liposomes can be prepared with diameters <100-200 nm, required to prevent reticulo-endothelial rejection and allow penetration into infectious-biofilms. However, surface-functionalization of liposomes is considerably more difficult than of micelles, which explains while self-targeting, pH-responsive liposomes that find their way through the blood circulation toward infectious-biofilms are still challenging to prepare. Equally, development of liposomes that penetrate over the entire thickness of biofilms to provide deep killing of biofilm inhabitants still provides a challenge. The liposomal phospholipid bilayer easily fuses with bacterial cell membranes to release high antimicrobial-doses directly inside bacteria. Arguably, protection against de-activation of antibiotics in liposomal nanocarriers and their fusogenicity constitute the biggest advantage of liposomal antimicrobial carriers over antimicrobials free in solution. Many Gram-negative and Gram-positive bacterial strains, resistant to specific antibiotics, have been demonstrated to be susceptible to these antibiotics when encapsulated in liposomal nanocarriers. Recently, also progress has been made concerning large-scale production and long-term storage of liposomes. Therewith, the remaining challenges to develop self-targeting liposomes that penetrate, accumulate and kill deeply in infectious-biofilms remain worthwhile to pursue.
Collapse
Affiliation(s)
- Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henny C. van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henk J. Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Wilhelm MJ, Dai HL. Molecule-Membrane Interactions in Biological Cells Studied with Second Harmonic Light Scattering. Chem Asian J 2019; 15:200-213. [PMID: 31721448 DOI: 10.1002/asia.201901406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/12/2019] [Indexed: 12/13/2022]
Abstract
The nonlinear optical phenomenon second harmonic light scattering (SHS) can be used for detecting molecules at the membrane surfaces of living biological cells. Over the last decade, SHS has been developed for quantitatively monitoring the adsorption and transport of small and medium size molecules (both neutral and ionic) across membranes in living cells. SHS can be operated with both time and spatial resolution and is even capable of isolating molecule-membrane interactions at specific membrane surfaces in multi-membrane cells, such as bacteria. In this review, we discuss select examples from our lab employing time-resolved SHS to study real-time molecular interactions at the plasma membranes of biological cells. We first demonstrate the utility of this method for determining the transport rates at each membrane/interface in a Gram-negative bacterial cell. Next, we show how SHS can be used to characterize the molecular mechanism of the century old Gram stain protocol for classifying bacteria. Additionally, we examine how membrane structures and molecular charge and polarity affect adsorption and transport, as well as how antimicrobial compounds alter bacteria membrane permeability. Finally, we discuss adaptation of SHS as an imaging modality to quantify molecular adsorption and transport in sub-cellular regions of individual living cells.
Collapse
Affiliation(s)
- Michael J Wilhelm
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
28
|
Abu-Laban M, Hamal P, Arrizabalaga JH, Forghani A, Dikkumbura AS, Kumal RR, Haber LH, Hayes DJ. Combinatorial Delivery of miRNA-Nanoparticle Conjugates in Human Adipose Stem Cells for Amplified Osteogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902864. [PMID: 31725198 PMCID: PMC8530457 DOI: 10.1002/smll.201902864] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Indexed: 05/25/2023]
Abstract
It is becoming more apparent in tissue engineering applications that fine temporal control of multiple therapeutics is desirable to modulate progenitor cell fate and function. Herein, the independent temporal control of the co-delivery of miR-148b and miR-21 mimic plasmonic nanoparticle conjugates to induce osteogenic differentiation of human adipose stem cells (hASCs), in a de novo fashion, is described. By applying a thermally labile retro-Diels-Alder caging and linkage chemistry, these miRNAs can be triggered to de-cage serially with discrete control of activation times. The method relies on illumination of the nanoparticles at their resonant wavelengths to generate sufficient local heating and trigger the untethering of the Diels-Alder cycloadduct. Characterization of the photothermal release using fluorophore-tagged miRNA mimics in vitro is carried out with fluorescence measurements, second harmonic generation, and confocal imaging. Osteogenesis of hASCs from the sequential co-delivery of miR-21 and miR-148b mimics is assessed using xylenol orange and alizarin red staining of deposited minerals, and quantitative polymerase chain reaction for gene expression of osteogenic markers. The results demonstrate that sequential miRNA mimic activation results in upregulation of osteogenic markers and mineralization relative to miR-148b alone, and co-activation of miR-148b and miR-21 at the same time.
Collapse
Affiliation(s)
- Mohammad Abu-Laban
- The Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Prakash Hamal
- The Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Julien H Arrizabalaga
- The Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anoosha Forghani
- The Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Asela S Dikkumbura
- The Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Raju R Kumal
- John and Willie Leone Family Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Louis H Haber
- The Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Daniel J Hayes
- The Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, Millennium Science Complex, Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
29
|
Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front Chem 2019. [PMID: 31998680 DOI: 10.3389/fchem.2019.00872/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Many nanotechnology-based antimicrobials and antimicrobial-delivery-systems have been developed over the past decades with the aim to provide alternatives to antibiotic treatment of infectious-biofilms across the human body. Antimicrobials can be loaded into nanocarriers to protect them against de-activation, and to reduce their toxicity and potential, harmful side-effects. Moreover, antimicrobial nanocarriers such as micelles, can be equipped with stealth and pH-responsive features that allow self-targeting and accumulation in infectious-biofilms at high concentrations. Micellar and liposomal nanocarriers differ in hydrophilicity of their outer-surface and inner-core. Micelles are self-assembled, spherical core-shell structures composed of single layers of surfactants, with hydrophilic head-groups and hydrophobic tail-groups pointing to the micellar core. Liposomes are composed of lipids, self-assembled into bilayers. The hydrophilic head of the lipids determines the surface properties of liposomes, while the hydrophobic tail, internal to the bilayer, determines the fluidity of liposomal-membranes. Therefore, whereas micelles can only be loaded with hydrophobic antimicrobials, hydrophilic antimicrobials can be encapsulated in the hydrophilic, aqueous core of liposomes and hydrophobic or amphiphilic antimicrobials can be inserted in the phospholipid bilayer. Nanotechnology-derived liposomes can be prepared with diameters <100-200 nm, required to prevent reticulo-endothelial rejection and allow penetration into infectious-biofilms. However, surface-functionalization of liposomes is considerably more difficult than of micelles, which explains while self-targeting, pH-responsive liposomes that find their way through the blood circulation toward infectious-biofilms are still challenging to prepare. Equally, development of liposomes that penetrate over the entire thickness of biofilms to provide deep killing of biofilm inhabitants still provides a challenge. The liposomal phospholipid bilayer easily fuses with bacterial cell membranes to release high antimicrobial-doses directly inside bacteria. Arguably, protection against de-activation of antibiotics in liposomal nanocarriers and their fusogenicity constitute the biggest advantage of liposomal antimicrobial carriers over antimicrobials free in solution. Many Gram-negative and Gram-positive bacterial strains, resistant to specific antibiotics, have been demonstrated to be susceptible to these antibiotics when encapsulated in liposomal nanocarriers. Recently, also progress has been made concerning large-scale production and long-term storage of liposomes. Therewith, the remaining challenges to develop self-targeting liposomes that penetrate, accumulate and kill deeply in infectious-biofilms remain worthwhile to pursue.
Collapse
Affiliation(s)
- Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.,Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|