1
|
Rinesh T, Srinivasan H, Sharma VK, Mitra S. Unraveling relationship between complex lifetimes and microscopic diffusion in deep eutectic solvents. J Chem Phys 2024; 161:024501. [PMID: 38973757 DOI: 10.1063/5.0213402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024] Open
Abstract
Aqueous mixtures of deep eutectic solvents (DESs) have emerged as a subject of interest in recent years for their tailored physicochemical properties. However, a comprehensive understanding of water's multifaceted influence on the microscopic dynamics, including its impact on improved transport properties of the DES, remains elusive. Additionally, the diffusion mechanisms within DESs manifest heterogeneous behavior, intricately tied to the formation and dissociation kinetics of complexes and hydrogen bonds. Therefore, it is imperative to explore the intricate interplay between bond kinetics, diffusion mechanism, and dynamical heterogeneity. This work employs water as an agent to explore their relationships by studying various relaxation phenomena in a DES based on acetamide and lithium perchlorate over a wide range of water concentrations. Notably, acetamide exhibits Fickian yet non-Gaussian diffusion across all water concentrations with Fickian (τf) and Gaussian (τg) timescales following a power-law relationship, τg∝τfγ, γ ∼ 1.4. The strength of coupling between bond kinetics and different diffusion timescales is estimated through various power-law relationships. Notably, acetamide-water hydrogen bond lifetime is linked to diffusive timescales through a single power-law over the entire water concentration studied. However, the relationship between diffusive timescales and the lifetime of acetamide-lithium complexes shows a sharp transition in behavior at 20 wt. % water, reflecting a change from vehicular diffusion below this concentration to structural diffusion above it. Our findings emphasize the critical importance of understanding bond dynamics within DESs, as they closely correlate with and regulate the molecular diffusion processes within these systems.
Collapse
Affiliation(s)
- T Rinesh
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Mondal J, Maji D, Biswas R. Temperature-dependent dielectric relaxation measurements of (acetamide + K/Na SCN) deep eutectic solvents: Decoding the impact of cation identity via computer simulations. J Chem Phys 2024; 160:084506. [PMID: 38421071 DOI: 10.1063/5.0193512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
The impact of successive replacement of K+ by Na+ on the megahertz-gigahertz polarization response of 0.25[fKSCN + (1 - f)NaSCN] + 0.75CH3CONH2 deep eutectic solvents (DESs) was explored via temperature-dependent (303 ≤ T/K ≤ 343) dielectric relaxation (DR) measurements and computer simulations. Both the DR measurements (0.2 ≤ ν/GHz ≤ 50) and the simulations revealed multi-Debye relaxations accompanied by a decrease in the solution static dielectric constant (ɛs) upon the replacement of K+ by Na+. Accurate measurements of the DR response of DESs below 100 MHz were limited by the well-known one-over-frequency divergence for conducting solutions. This problem was tackled in simulations by removing the zero frequency contributions arising from the ion current to the total simulated DR response. The temperature-dependent measurements revealed a much stronger viscosity decoupling of DR times for Na+-containing DES than for the corresponding K+ system. The differential scanning calorimetry measurements indicated a higher glass transition temperature for Na+-DES (∼220 K) than K+-DES (∼200 K), implying more fragility and cooperativity for the former (Na+-DES) than the latter. The computer simulations revealed a gradual decrease in the average number of H bonds (⟨nHB⟩) per acetamide molecule and increased frustrations in the average orientational order upon the replacement of K+ by Na+. Both the measured and simulated ɛs values were found to decrease linearly with ⟨nHB⟩. Decompositions of the simulated DR spectra revealed that the cation-dependent cross interaction (dipole-ion) term contributes negligibly to ɛs and appears in the terahertz regime. Finally, the simulated collective single-particle reorientational relaxations and the structural H-bond fluctuation dynamics revealed the microscopic origin of the cation identity dependence shown by the measured DR relaxation times.
Collapse
Affiliation(s)
- Jayanta Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Dhrubajyoti Maji
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
3
|
Srinivasan H, Sharma VK, Sakai VG, Mukhopadhyay R, Mitra S. Noncanonical Relationship between Heterogeneity and the Stokes-Einstein Breakdown in Deep Eutectic Solvents. J Phys Chem Lett 2023; 14:9766-9773. [PMID: 37882461 DOI: 10.1021/acs.jpclett.3c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The relationship between Stokes-Einstein breakdown (SEB) and dynamical heterogeneity (DH) is of paramount importance in the physical chemistry of complex fluids. In this work, we employ neutron scattering to probe the DH and SEB in a series of deep eutectic solvents (DESs) composed of acetamide and lithium salts. Quasielastic neutron scattering experiments reveal SEB in the jump diffusion of acetamide, represented by a fractional Stokes-Einstein relationship. Among these DESs, lithium perchlorate exhibits the most pronounced SEB while lithium bromide displays the weakest. Concurrently, elastic incoherent neutron scans identify that bromide DES is the most heterogeneous and perchlorate is the least. For the first time, our study unveils a counterintuitive incommensurate relationship between DH and SEB. Further, it reveals the intricate contrasting nature of the SEB-DH relationship when investigated in proximity to the glass-transition temperature and further away from it.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V García Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - R Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Banerjee S, Ghorai PK, Maji D, Biswas R. Difference in "Supercooling" Affinity between (Acetamide + Na/KSCN) Deep Eutectics: Reflections in the Simulated Anomalous Motions of the Constituents and Solution Microheterogeneity Features. J Phys Chem B 2022; 126:10146-10155. [PMID: 36414001 DOI: 10.1021/acs.jpcb.2c04994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deep depression of freezing points of ionic amide deep eutectic solvents (DESs) is known to exhibit a significant dependence on the identity of ions present in those systems and the nature of the functional group attached to the host amide. This deep depression of the freezing point is sometimes termed as "supercooling". For (acetamide + electrolyte) DESs, experiments have revealed signatures of ion-dependent spatiotemporal heterogeneity features. The focus of this work is to provide microscopic explanations of these experimentally observed macroscopic system properties in terms of particle jumps and insights about the origin of the cation dependence. For this purpose, extensive molecular dynamics simulations have been performed employing (acetamide + Na/KSCN) deep eutectics as representative ionic systems at 303, 318, 333, and 348 K. The individual translational motions of acetamide and the ions are followed, and their connections to solution heterogeneity are explored. The center-of-mass motion for Na+ has been found to be more anomalous than that for K+. This difference corroborates well with experimental reports on heterogeneous relaxations in these systems. Simulated viscosity coefficients and dynamic heterogeneity features also reflect this difference. Moreover, simulated reorientational relaxations of acetamide molecules in these ionic DESs suggest that a Na+-containing DES is more heterogeneous than the corresponding K+-containing system. Estimated void and neck distributions for acetamide molecules differ as the alkali metal ions differ. In brief, this study provides a detailed microscopic view of the cation dependence of the microheterogeneous relaxation dynamics of these DESs reported repeatedly by different experiments.
Collapse
Affiliation(s)
- Swarup Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Pradip Kr Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Dhrubajyoti Maji
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
5
|
Srinivasan H, Sharma VK, Mitra S. Modulation of Diffusion Mechanism and Its Correlation with Complexation in Aqueous Deep Eutectic Solvents. J Phys Chem B 2022; 126:9026-9037. [PMID: 36315464 DOI: 10.1021/acs.jpcb.2c05312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aqueous mixtures of deep eutectic solvents (DESs) have gained traction recently as an effective template to tailor their physicochemical properties. But detailed microscopic insights into the effects of water on the molecular relaxation phenomenon in DESs are not entirely understood. DESs are strong network-forming liquids due to the extensive hydrogen bonding and complex formation between their species, and therefore, water can behave as a controlled disruptor altering the microscopic structure and dynamics in DESs. In this study, the role of water in the diffusion mechanism of acetamide in the aqueous mixtures of DESs synthesized using acetamide and lithium perchlorate is investigated using molecular dynamics (MD) simulation and quasielastic neutron scattering (QENS). The acetamide dynamics comprises localized diffusion within transient cages and a jump diffusion process across cages. The jump diffusion process is observed to be strongly enhanced by about a factor of 10 as the water content in the system is increased. Meanwhile, the geometry of the localized dynamics is unaltered by addition of water, but the localized diffusion becomes significantly faster and more heterogeneous with increasing water concentration. The accelerating effects of water on localized diffusion are also substantiated by QENS experiments. The water concentration in the DES is observed to control the solvation structure of lithium ions, with the ions becoming significantly hydrated at 20 wt % water. The formation of interwater and water-acetamide hydrogen bonds is observed. The increase in water concentration is found to increase the number of H-bonds; however, their lifetimes are found to decrease substantially. Similarly, the lifetimes of acetamide-lithium complexes are also found to be diminished by increasing water concentration. A power-law scaling relationship between lifetimes and diffusion constants is established, elucidating the extent of coupling between diffusive processes and hydrogen bonding and microscopic complexation. This study demonstrates the ability to use water as an agent to probe the role of structural relaxation and complex lifetimes of diffusive processes at different time and length scales.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| |
Collapse
|
6
|
Tolmachev D, Lukasheva N, Ramazanov R, Nazarychev V, Borzdun N, Volgin I, Andreeva M, Glova A, Melnikova S, Dobrovskiy A, Silber SA, Larin S, de Souza RM, Ribeiro MCC, Lyulin S, Karttunen M. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int J Mol Sci 2022; 23:645. [PMID: 35054840 PMCID: PMC8775846 DOI: 10.3390/ijms23020645] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs. Computer simulation and machine learning techniques provide a fruitful approach as they can predict and reveal physical mechanisms and readily be linked to experiments. This review is devoted to the computational research of DESs and describes technical features of DES simulations and the corresponding perspectives on various DES applications. The aim is to demonstrate the current frontiers of computational research of DESs and discuss future perspectives.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Ruslan Ramazanov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Victor Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Natalia Borzdun
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Igor Volgin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Maria Andreeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Artyom Glova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Sofia Melnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Alexey Dobrovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Steven A. Silber
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Rafael Maglia de Souza
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Mauro Carlos Costa Ribeiro
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, São Paulo 05508-070, Brazil; (R.M.d.S.); (M.C.C.R.)
| | - Sergey Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (N.L.); (R.R.); (V.N.); (N.B.); (I.V.); (M.A.); (A.G.); (S.M.); (A.D.); (S.L.); (S.L.)
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
7
|
Kim P, Lee IS, Kim JY, Mswahili M, Jeong YS, Yoon WJ, Yun H, Lee MJ, Choi GJ. A study to discover novel pharmaceutical cocrystals of pelubiprofen with a machine learning approach compared. CrystEngComm 2022. [DOI: 10.1039/d2ce00153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pelubiprofen (PF), a biopharmaceutical classification system (BCS) class II non-steroidal anti-inflammatory drug, has been on the market only in its crystalline form. To discover the first cocrystal form(s) of the...
Collapse
|
8
|
Mukherjee K, Das S, Rajbangshi J, Tarif E, Barman A, Biswas R. Temperature-Dependent Dielectric Relaxation in Ionic Acetamide Deep Eutectics: Partial Viscosity Decoupling and Explanations from the Simulated Single-Particle Reorientation Dynamics and Hydrogen-Bond Fluctuations. J Phys Chem B 2021; 125:12552-12567. [PMID: 34752087 DOI: 10.1021/acs.jpcb.1c07299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here temperature-dependent (293 ≤ T (K) ≤ 336) dielectric relaxation (DR) measurements of (acetamide + LiBr/NO3-/ClO4-) deep eutectic solvents (DESs) in the frequency window of 0.2 ≤ ν (GHz) ≤ 50 and explore, via molecular dynamics simulations, the relative roles for the collective single-particle reorientational relaxations and the H-bond dynamics of acetamide in the measured DR response. In addition, DR measurements of neat molten acetamide were performed. Recorded DR spectra of these DESs require multi-Debye fits and produce well-separated DR time scales that are spread over several picoseconds to ∼1 ns. Simulations suggest DR time scales derive contributions from both the collective reorientational (Cl(t)) relaxation and structural H-bond (CHB(t)) dynamics of acetamide. A good correlation between the measured and simulated activation energies further reveals a strong connection between the measured DR and the simulated Cl(t) and CHB(t). Average DR times exhibit a strong fractional viscosity dependence, suggesting substantial microheterogeneity in these media. Simulations of Cl(t) and CHB(t) reveal strong stretched exponential relaxations with a stretching exponent, 0.4 ≤ β ≤ 0.7. The ratio between the average reorientational correlation times of first and second ranks, ⟨τ⟩l=1/⟨τ⟩l=2, deviates appreciably from Debye's l(l+1) law for homogeneous media. Importantly, a pronounced translation-rotation decoupling between the simulated reorientation and center-of-mass diffusion times was observed.
Collapse
|
9
|
Fan Y, Luo H, Zhu C, Li W, Wu D, Wu H. Hydrophobic natural alcohols based deep eutectic solvents: Effective solvents for the extraction of quinine. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Srinivasan H, Sharma VK, Mitra S. Can the microscopic and macroscopic transport phenomena in deep eutectic solvents be reconciled? Phys Chem Chem Phys 2021; 23:22854-22873. [PMID: 34505589 DOI: 10.1039/d1cp02413b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deep eutectic solvents (DESs) have become ubiquitous in a variety of industrial and pharmaceutical applications since their discovery. However, the fundamental understanding of their physicochemical properties and their emergence from the microscopic features is still being explored fervently. Particularly, the knowledge of transport mechanisms in DESs is essential to tune their properties, which shall aid in expanding the territory of their applications. This perspective presents the current state of understanding of the bulk/macroscopic transport properties and microscopic relaxation processes in DESs. The dependence of these properties on the components and composition of the DES is explored, highlighting the role of hydrogen bonding (H-bonding) interactions. Modulation of these interactions by water and other additives, and their subsequent effect on the transport mechanisms, is also discussed. Various models (e.g. hole theory, free volume theory, etc.) have been proposed to explain the macroscopic transport phenomena from a microscopic origin. But the formation of H-bond networks and clusters in the DES reveals the insufficiency of these models, and establishes an antecedent for dynamic heterogeneity. Even significantly above the glass transition, the microscopic relaxation processes in DESs are rife with temporal and spatial heterogeneity, which causes a substantial decoupling between the viscosity and microscopic diffusion processes. However, we propose that a thorough understanding of the structural relaxation associated to the H-bond dynamics in DESs will provide the necessary framework to interpret the emergence of bulk transport properties from their microscopic counterparts.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
11
|
Maji D, Indra S, Biswas R. Dielectric relaxations of molten acetamide: dependence on the model interaction potentials and the effects of system size. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01973-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
|
13
|
Srinivasan H, Sharma VK, Mitra S. Water accelerates the hydrogen-bond dynamics and abates heterogeneity in deep eutectic solvent based on acetamide and lithium perchlorate. J Chem Phys 2021; 155:024505. [PMID: 34266283 DOI: 10.1063/5.0054942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Deep eutectic solvents (DESs) have become a prevalent and promising medium in various industrial applications. The addition of water to DESs has attracted a lot of attention as a scheme to modulate their functionalities and improve their physicochemical properties. In this work, we study the effects of water on an acetamide based DES by probing its microscopic structure and dynamics using classical molecular dynamics simulation. It is observed that, at low water content, acetamide still remains the dominant solvate in the first solvation shell of lithium ions, however, beyond 10 wt. %, it is replaced by water. The increase in the water content in the solvent accelerates the H-bond dynamics by drastically decreasing the lifetimes of acetamide-lithium H-bond complexes. Additionally, water-lithium H-bond complexes are also found to form, with systematically longer lifetimes in comparison to acetamide-lithium complexes. Consequently, the diffusivity and ionic conductivity of all the species in the DES are found to increase substantially. Non-Gaussianity parameters for translational motions of acetamide and water in the DES show a conspicuous decrease with addition of water in the system. The signature of jump-like reorientation of acetamide is observed in the DES by quantifying the deviation from rotational Brownian motion. However, a notable decrease in the deviation is observed with an increase in the water content in the DES. This study demonstrates the intricate connection between H-bond dynamics and various microscopic dynamical parameters in the DES, by investigating the modulation of the former with addition of water.
Collapse
Affiliation(s)
- H Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - V K Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
14
|
Al-Ostoot FH, Salah S, Khanum SA. Recent investigations into synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole and quinoline) as possible therapeutic candidates. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [PMCID: PMC7849228 DOI: 10.1007/s13738-021-02172-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Medicinal chemistry can rightfully be regarded as a cornerstone in the public health of our modern society that combines chemistry and pharmacology with the aim of designing and developing new pharmaceutical compounds. For this purpose, many chemical techniques as well as new computational chemistry applications are used to study the utilization of drugs and their biological effects. In the biological interface, medicinal chemistry constitutes a group of interdisciplinary sciences, as well as controlling its organic, physical and computational pillars. Therefore, medicinal chemists working to design an integrated and developing system that portends an era of novel and safe tailored drugs either by synthesizing new pharmaceuticals or to improving the processes by which existing pharmaceuticals are made. It includes researching the effects of synthetic, semi-synthetic and natural biologically active substances based on molecular interactions in terms of molecular structure with triggered functional groups or the specific physicochemical properties. The present work focuses on the literature survey of chemical diversity of phenoxy acetamide and its derivatives (Chalcone, Indole and Quinoline) in the molecular framework in order to get complete information regarding pharmacologically interesting compounds of widely different composition. From a biological and industrial point of view, this literature review may provide an opportunity for the chemists to design new derivatives of phenoxy acetamide and its derivatives that proved to be the successful agent in view of safety and efficacy to enhance life quality.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysuru, 570 006 India
- Department of Biochemistry, Faculty of Education and Science, Al-Baydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja’s College, University of Mysore, Mysuru, 570 006 India
| |
Collapse
|
15
|
Banerjee S, Ghorai PK, Das S, Rajbangshi J, Biswas R. Heterogeneous dynamics, correlated time and length scales in ionic deep eutectics: Anion and temperature dependence. J Chem Phys 2020; 153:234502. [DOI: 10.1063/5.0024355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Swarup Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Pradip Kr. Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Suman Das
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Juriti Rajbangshi
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
16
|
Gurkan BE, Maginn EJ, Pentzer EB. Deep Eutectic Solvents: A New Class of Versatile Liquids. J Phys Chem B 2020; 124:11313-11315. [PMID: 33327722 DOI: 10.1021/acs.jpcb.0c10099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Burcu E Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame
| | - Emily B Pentzer
- Department of Chemistry and Department of Materials Science and Engineering, Texas A&M University
| |
Collapse
|
17
|
Srinivasan H, Sharma VK, Mukhopadhyay R, Mitra S. Solvation and transport of lithium ions in deep eutectic solvents. J Chem Phys 2020; 153:104505. [DOI: 10.1063/5.0018510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- H. Srinivasan
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - V. K. Sharma
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - R. Mukhopadhyay
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - S. Mitra
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|