1
|
Hashemi A, Bougueroua S, Gaigeot MP, Pidko EA. HiREX: High-Throughput Reactivity Exploration for Extended Databases of Transition-Metal Catalysts. J Chem Inf Model 2023; 63:6081-6094. [PMID: 37738303 PMCID: PMC10565810 DOI: 10.1021/acs.jcim.3c00660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/24/2023]
Abstract
A method is introduced for the automated analysis of reactivity exploration for extended in silico databases of transition-metal catalysts. The proposed workflow is designed to tackle two key challenges for bias-free mechanistic explorations on large databases of catalysts: (1) automated exploration of the chemical space around each catalyst with unique structural and chemical features and (2) automated analysis of the resulting large chemical data sets. To address these challenges, we have extended the application of our previously developed ReNeGate method for bias-free reactivity exploration and implemented an automated analysis procedure to identify the classes of reactivity patterns within specific catalyst groups. Our procedure applied to an extended series of representative Mn(I) pincer complexes revealed correlations between structural and reactive features, pointing to new channels for catalyst transformation under the reaction conditions. Such an automated high-throughput virtual screening of systematically generated hypothetical catalyst data sets opens new opportunities for the design of high-performance catalysts as well as an accelerated method for expert bias-free high-throughput in silico reactivity exploration.
Collapse
Affiliation(s)
- Ali Hashemi
- Inorganic
Systems Engineering, Department of Chemical Engineering, Faculty of
Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sana Bougueroua
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement
(LAMBE) UMR8587, Paris-Saclay, Univ Evry,
CY Cergy Paris Université, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Marie-Pierre Gaigeot
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement
(LAMBE) UMR8587, Paris-Saclay, Univ Evry,
CY Cergy Paris Université, CNRS, LAMBE UMR8587, Evry-Courcouronnes 91025, France
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering, Department of Chemical Engineering, Faculty of
Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
2
|
Yang W, Filonenko GA, Pidko EA. Performance of homogeneous catalysts viewed in dynamics. Chem Commun (Camb) 2023; 59:1757-1768. [PMID: 36683401 PMCID: PMC9910057 DOI: 10.1039/d2cc05625a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Effective assessment of catalytic performance is the foundation for the rational design and development of new catalysts with superior performance. The ubiquitous screening/optimization studies use reaction yields as the sole performance metric in an approach that often neglects the complexity of the catalytic system and intrinsic reactivities of the catalysts. Using an example of hydrogenation catalysis, we examine the transient behavior of catalysts that are often encountered in activation, deactivation and catalytic turnover processes. Each of these processes and the reaction environment in which they take place are gradually shown to determine the real-time catalyst speciation and the resulting kinetics of the overall catalytic reaction. As a result, the catalyst performance becomes a complex and time-dependent metric defined by multiple descriptors apart from the reaction yield. This behaviour is not limited to hydrogenation catalysis and affects various catalytic transformations. In this feature article, we discuss these catalytically relevant descriptors in an attempt to arrive at a comprehensive depiction of catalytic performance.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Georgy A. Filonenko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 92629 HZDelftThe Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
3
|
Zhao Y, Zhang L, Tang Y, Pu M, Lei M. A theoretical study of asymmetric ketone hydrogenation catalyzed by Mn complexes: from the catalytic mechanism to the catalyst design. Phys Chem Chem Phys 2022; 24:13365-13375. [PMID: 35608221 DOI: 10.1039/d2cp00818a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a density functional theory (DFT) study was performed to investigate asymmetric ketone hydrogenation (AKH) catalyzed by Mn complexes, from the catalytic mechanism to the catalyst design. The calculated results indicated that the Mn(CO)2-PSiNSiP (A1, PSiNSiP = P(Ph)2Si(CH3)2NSi(CH3)2P(Ph)2) pincer complex has potential high catalytic activity for ketone hydrogenation. The Mn(CO)-LYB (B, LYB = P(Ph)2Si(CH3)2NSi(CH3)2P(Me)2) pincer complex was then designed to catalyze AKH with good stereoselectivity. The hydrogen transfer (HT) step is the chirality-determining step. To avoid the enantiomer of Mn(CO)2-LYB, which could eliminate the high stereoselectivity during AKH, novel Mn complexes with quadridentate ligands, such as Mn(CO)-LYC (C, LYC = P(CH3)2CH2Si(CH3)NSi(CH3)(Si(CH3)CH2P(CH3)2)CH2P(Ph)2) and Mn(CO)-LYD (D, LYD = P(CH3)2CH2Si(CH3)NSi(CH3)(Si(CH3)CH2P(CH3)2)CH2P(Cy)2), were designed to drive AKH with medium stereoselectivity. In order to increase the stereoselectivity of AKH, Mn(CO)-LYE (E, LYE = PH2CH2Si(CH3)NSi(CH3)(Si(CH3)CH2P(CH3)2)CH2P(Ph)2) and Mn(CO)-LYF (F, LYF = PH2CH2Si(CH3)NSi(CH3)(Si(CH3)CH2P(CH3)2)CH2P(Cy)2) were further designed and showed very good stereoselectivity, which is due to the lower deformation energy and stronger interactions between the ketone substrates and catalysts. This work may shed light on the design of cheap metal catalysts with a new ligand framework for the asymmetric hydrogenation (AH) of CX bonds (X = O, N).
Collapse
Affiliation(s)
- Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yanhui Tang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China. .,School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, P. R. China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Krieger AM, Sinha V, Li G, Pidko EA. Solvent-Assisted Ketone Reduction by a Homogeneous Mn Catalyst. Organometallics 2022; 41:1829-1835. [PMID: 35910260 PMCID: PMC9326964 DOI: 10.1021/acs.organomet.2c00077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The choice of a solvent
and the reaction conditions often defines
the overall behavior of a homogeneous catalytic system by affecting
the preferred reaction mechanism and thus the activity and selectivity
of the catalytic process. Here, we explore the role of solvation in
the mechanism of ketone reduction using a model representative of
a bifunctional Mn-diamine catalyst through density functional theory
calculations in a microsolvated environment by considering explicit
solvent and fully solvated ab initio molecular dynamics simulations
for the key elementary steps. Our computational analysis reveals the
possibility of a Meerwein–Ponndorf–Verley (MPV) type
mechanism in this system, which does not involve the participation
of the N–H moiety and the formation of a transition-metal hydride
species in ketone conversion. This path was not previously considered
for Mn-based metal–ligand cooperative transfer hydrogenation
homogeneous catalysis. The MPV mechanism is strongly facilitated by
the solvent molecules present in the reaction environment and can
potentially contribute to the catalytic performance of other related
catalyst systems. Calculations indicate that, despite proceeding effectively
in the second coordination sphere of the transition-metal center,
the MPV reaction path retains the enantioselectivity preference induced
by the presence of the small chiral N,N′-dimethyl-1,2-cyclohexanediamine ligand within the catalytic
Mn(I) complex.
Collapse
Affiliation(s)
- Annika M. Krieger
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Vivek Sinha
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Guanna Li
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Evgeny A. Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
5
|
Sinha V, Khramenkova E, Pidko EA. Solvent-mediated outer-sphere CO 2 electro-reduction mechanism over the Ag111 surface. Chem Sci 2022; 13:3803-3808. [PMID: 35432905 PMCID: PMC8966634 DOI: 10.1039/d1sc07119j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 12/01/2022] Open
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) is one of the key technologies of the clean energy economy. Molecular-level understanding of the CO2RR process is instrumental for the better design of electrodes operable at low overpotentials with high current density. The catalytic mechanism underlying the turnover and selectivity of the CO2RR is modulated by the nature of the electrocatalyst, as well as the electrolyte liquid, and its ionic components that form the electrical double layer (EDL). Herein we demonstrate the critical non-innocent role of the EDL for the activation and conversion of CO2 at a high cathodic bias for electrocatalytic conversion over a silver surface as a representative low-cost model cathode. By using a multiscale modeling approach we demonstrate that under such conditions a dense EDL is formed, which hinders the diffusion of CO2 towards the Ag111 electrocatalyst surface. By combining DFT calculations and ab initio molecular dynamics simulations we identify favorable pathways for CO2 reduction directly over the EDL without the need for adsorption to the catalyst surface. The dense EDL promotes homogeneous phase reduction of CO2 via electron transfer from the surface to the electrolyte. Such an outer-sphere mechanism favors the formation of formate as the CO2RR product. The formate can undergo dehydration to CO via a transition state stabilized by solvated alkali cations in the EDL.
Collapse
Affiliation(s)
- Vivek Sinha
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology Delft The Netherlands
| | - Elena Khramenkova
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology Delft The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology Delft The Netherlands
| |
Collapse
|
6
|
Abstract
Computational methods have emerged as a powerful tool to augment traditional experimental molecular catalyst design by providing useful predictions of catalyst performance and decreasing the time needed for catalyst screening. In this perspective, we discuss three approaches for computational molecular catalyst design: (i) the reaction mechanism-based approach that calculates all relevant elementary steps, finds the rate and selectivity determining steps, and ultimately makes predictions on catalyst performance based on kinetic analysis, (ii) the descriptor-based approach where physical/chemical considerations are used to find molecular properties as predictors of catalyst performance, and (iii) the data-driven approach where statistical analysis as well as machine learning (ML) methods are used to obtain relationships between available data/features and catalyst performance. Following an introduction to these approaches, we cover their strengths and weaknesses and highlight some recent key applications. Furthermore, we present an outlook on how the currently applied approaches may evolve in the near future by addressing how recent developments in building automated computational workflows and implementing advanced ML models hold promise for reducing human workload, eliminating human bias, and speeding up computational catalyst design at the same time. Finally, we provide our viewpoint on how some of the challenges associated with the up-and-coming approaches driven by automation and ML may be resolved.
Collapse
Affiliation(s)
- Ademola Soyemi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|