1
|
Rajeev A, Mohammed TP, George A, Sankaralingam M. Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies. CHEM REC 2025:e202400186. [PMID: 39817884 DOI: 10.1002/tcr.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts. In this review, we outline the methane metabolism performed by methanotrophs and detail the latest advancements in the active site structures and catalytic mechanisms of both types of MMOs. Also, recent progress in the bioinspired approaches using various heterogeneous catalysts, especially first-row transition metal zeolites and the mechanistic insights are discussed. In addition, studies using molecular complexes such as "Periana catalyst" for methane to methanol conversion through methyl ester formation in the presence of strong acids are also detailed. Compared to the progress noted in the metal zeolites-mediated methane activation field, the utilisation of molecular catalysts or MMOs for this application is still in its nascent phase and further research is required to overcome the limitations of these methods effectively.
Collapse
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| | - Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| | - Akhila George
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| |
Collapse
|
2
|
Ma Y, Lang J. A thorough mechanistic study of ethanol, acetaldehyde, and ethylene adsorption on Cu-MOR via DFT analysis. Phys Chem Chem Phys 2024; 26:4845-4854. [PMID: 38170914 DOI: 10.1039/d3cp05314h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A comprehensive study combining the density functional theory (DFT) and ab initio thermodynamic analysis was conducted to unravel the active sites and adsorption mechanisms of ethanol, acetaldehyde, and ethylene on various copper-modified mordenite (Cu-MOR) configurations, including Cu3/MOR, Cu3O3/MOR, and Cu6/MOR. This research involved an exhaustive exploration of structural and formation energies, revealing that the formation energies of these structures are temperature-dependent. Despite all three structures thermodynamically accommodating ethanol adsorption, their respective adsorption mechanisms differ significantly. In Cu3/MOR, weak van der Waals interactions predominate, while strong Cu-OOH interactions in Cu6/MOR facilitate ethanol dehydration. Conversely, Cu3O3/MOR exhibits pronounced Cu3O3-HOH interactions that favor ethanol dehydrogenation. Notably, Cu3O3/MOR displays robust ethylene adsorption, which enhances the potential for further ethylene activation. In-depth Bader charge and density of states analyses underscore the varying strengths and electronic characteristics of these interactions. This research provides a theoretical foundation for the design of highly efficient Cu-MOR catalysts tailored for the selective conversion of ethanol.
Collapse
Affiliation(s)
- Yuli Ma
- Institute of Marine Equipment, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Junyu Lang
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China.
| |
Collapse
|
3
|
Kishore MA, Lee S, Yoo JS. Fundamental Limitation in Electrochemical Methane Oxidation to Alcohol: A Review and Theoretical Perspective on Overcoming It. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301912. [PMID: 37740423 PMCID: PMC10625077 DOI: 10.1002/advs.202301912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/27/2023] [Indexed: 09/24/2023]
Abstract
The direct conversion of gaseous methane to energy-dense liquid derivatives such as methanol and ethanol is of profound importance for the more efficient utilization of natural gas. However, the thermo-catalytic partial oxidation of this simple alkane has been a significant challenge due to the high C-H bond energy. Exploiting electrocatalysis for methane activation via active oxygen species generated on the catalyst surface through electrochemical water oxidation is generally considered as economically viable and environmentally benign compared to energy-intensive thermo-catalysis. Despite recent progress in electrochemical methane oxidation to alcohol, the competing oxygen evolution reaction (OER) still impedes achieving high faradaic efficiency and product selectivity. In this review, an overview of current progress in electrochemical methane oxidation, focusing on mechanistic insights on methane activation, catalyst design principles based on descriptors, and the effect of reaction conditions on catalytic performance are provided. Mechanistic requirements for high methanol selectivity, and limitations of using water as the oxidant are discussed, and present the perspective on how to overcome these limitations by employing carbonate ions as the oxidant.
Collapse
Affiliation(s)
- M.R. Ashwin Kishore
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| | - Sungwoo Lee
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| |
Collapse
|
4
|
Tao L, Khramenkova E, Lee I, Ikuno T, Khare R, Jentys A, Fulton JL, Kolganov AA, Pidko EA, Sanchez-Sanchez M, Lercher JA. Speciation and Reactivity Control of Cu-Oxo Clusters via Extraframework Al in Mordenite for Methane Oxidation. J Am Chem Soc 2023; 145:17710-17719. [PMID: 37545395 DOI: 10.1021/jacs.3c04328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The stoichiometric conversion of methane to methanol by Cu-exchanged zeolites can be brought to highest yields by the presence of extraframework Al and high CH4 chemical potentials. Combining theory and experiments, the differences in chemical reactivity of monometallic Cu-oxo and bimetallic Cu-Al-oxo nanoclusters stabilized in zeolite mordenite (MOR) are investigated. Cu-L3 edge X-ray absorption near-edge structure (XANES), infrared (IR), and ultraviolet-visible (UV-vis) spectroscopies, in combination with CH4 oxidation activity tests, support the presence of two types of active clusters in MOR and allow quantification of the relative proportions of each type in dependence of the Cu concentration. Ab initio molecular dynamics (MD) calculations and thermodynamic analyses indicate that the superior performance of materials enriched in Cu-Al-oxo clusters is related to the activity of two μ-oxo bridges in the cluster. Replacing H2O with ethanol in the product extraction step led to the formation of ethyl methyl ether, expanding this way the applicability of these materials for the activation and functionalization of CH4. We show that competition between different ion-exchanged metal-oxo structures during the synthesis of Cu-exchanged zeolites determines the formation of active species, and this provides guidelines for the synthesis of highly active materials for CH4 activation and functionalization.
Collapse
Affiliation(s)
- Lei Tao
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Elena Khramenkova
- Inorganic Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Insu Lee
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Takaaki Ikuno
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Andreas Jentys
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - John L Fulton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Alexander A Kolganov
- Inorganic Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Maricruz Sanchez-Sanchez
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Dummer N, Willock DJ, He Q, Howard MJ, Lewis RJ, Qi G, Taylor SH, Xu J, Bethell D, Kiely CJ, Hutchings GJ. Methane Oxidation to Methanol. Chem Rev 2023; 123:6359-6411. [PMID: 36459432 PMCID: PMC10176486 DOI: 10.1021/acs.chemrev.2c00439] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 12/04/2022]
Abstract
The direct transformation of methane to methanol remains a significant challenge for operation at a larger scale. Central to this challenge is the low reactivity of methane at conditions that can facilitate product recovery. This review discusses the issue through examination of several promising routes to methanol and an evaluation of performance targets that are required to develop the process at scale. We explore the methods currently used, the emergence of active heterogeneous catalysts and their design and reaction mechanisms and provide a critical perspective on future operation. Initial experiments are discussed where identification of gas phase radical chemistry limited further development by this approach. Subsequently, a new class of catalytic materials based on natural systems such as iron or copper containing zeolites were explored at milder conditions. The key issues of these technologies are low methane conversion and often significant overoxidation of products. Despite this, interest remains high in this reaction and the wider appeal of an effective route to key products from C-H activation, particularly with the need to transition to net carbon zero with new routes from renewable methane sources is exciting.
Collapse
Affiliation(s)
- Nicholas
F. Dummer
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - David J. Willock
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Qian He
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore117575, Singapore
| | - Mark J. Howard
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Richard J. Lewis
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Guodong Qi
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Sciences, Wuhan430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Stuart H. Taylor
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| | - Jun Xu
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology,
Chinese Academy of Sciences, Wuhan430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Don Bethell
- Department
of Chemistry, University of Liverpool, Crown Street, LiverpoolL69 7ZD, United
Kingdom
| | - Christopher J. Kiely
- Department
of Materials Science and Engineering, Lehigh
University, 5 East Packer
Avenue, Bethlehem, Pennsylvania18015, United States
| | - Graham J. Hutchings
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CardiffCF10 3AT, United
Kingdom
| |
Collapse
|
6
|
Pokhrel J, Shantz DF. Continuous Partial Oxidation of Methane to Methanol over Cu-SSZ-39 catalysts. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
7
|
Khurana I, Albarracin-Caballero JD, Shih AJ. Identification and quantification of multinuclear Cu active sites derived from monomeric Cu moieties for dry NO oxidation over Cu-SSZ-13. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Gong X, Çağlayan M, Ye Y, Liu K, Gascon J, Dutta Chowdhury A. First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chem Rev 2022; 122:14275-14345. [PMID: 35947790 DOI: 10.1021/acs.chemrev.2c00076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zeolite chemistry and catalysis are expected to play a decisive role in the next decade(s) to build a more decentralized renewable feedstock-dependent sustainable society owing to the increased scrutiny over carbon emissions. Therefore, the lack of fundamental and mechanistic understanding of these processes is a critical "technical bottleneck" that must be eliminated to maximize economic value and minimize waste. We have identified, considering this objective, that the chemistry related to the first-generation reaction intermediates (i.e., carbocations, radicals, carbenes, ketenes, and carbanions) in zeolite chemistry and catalysis is highly underdeveloped or undervalued compared to other catalysis streams (e.g., homogeneous catalysis). This limitation can often be attributed to the technological restrictions to detect such "short-lived and highly reactive" intermediates at the interface (gas-solid/solid-liquid); however, the recent rise of sophisticated spectroscopic/analytical techniques (including under in situ/operando conditions) and modern data analysis methods collectively compete to unravel the impact of these organic intermediates. This comprehensive review summarizes the state-of-the-art first-generation organic reaction intermediates in zeolite chemistry and catalysis and evaluates their existing challenges and future prospects, to contribute significantly to the "circular carbon economy" initiatives.
Collapse
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Mustafa Çağlayan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | |
Collapse
|
9
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
10
|
Affiliation(s)
- Milica Feldt
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Theory & Catalysis Albert-Einstein-Str 29A 18059 Rostock GERMANY
| | - Quan Manh Phung
- Nagoya University: Nagoya Daigaku Department of Chemistry JAPAN
| |
Collapse
|
11
|
Direct assessment of confinement effect in zeolite-encapsulated subnanometric metal species. Nat Commun 2022; 13:821. [PMID: 35145095 PMCID: PMC8831493 DOI: 10.1038/s41467-022-28356-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Subnanometric metal species confined inside the microporous channels/cavities of zeolites have been demonstrated as stable and efficient catalysts. The confinement interaction between the metal species and zeolite framework has been proposed to play the key role for stabilization, though the confinement interaction is elusive to be identified and measured. By combining theoretical calculations, imaging simulation and experimental measurements based on the scanning transmission electron microscopy-integrated differential phase contrast imaging technique, we have studied the location and coordination environment of isolated iridium atoms and clusters confined in zeolite. The image analysis results indicate that the local strain is intimately related to the strength of metal-zeolite interaction and a good correlation is found between the zeolite deformation energy, the charge state of the iridium species and the local absolute strain. The direct observation of confinement with subnanometric metal species encapsulated in zeolites provides insights to understand their structural features and catalytic consequences. Zeolite-encapsulated metal nanoparticles have important catalytic properties, but their effect on the zeolite local structure has been difficult to characterize. Here the authors, using DFT calculations and scanning transmission electron microscopy, characterize the local strain due to confinement effects in metal-zeolite catalysts.
Collapse
|
12
|
Panthi D, Adeyiga O, Odoh SO. DFT Analysis of Methane C-H Activation and Over-Oxidation by [Cu 2 O] 2+ and [Cu 2 O 2 ] 2+ Sites in Zeolite Mordenite: Intra- versus Inter-site Over-Oxidation. Chemphyschem 2021; 22:2517-2525. [PMID: 34519406 DOI: 10.1002/cphc.202100580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Indexed: 11/06/2022]
Abstract
Methane over-oxidation by copper-exchanged zeolites prevents realization of high-yield catalytic conversion. However, there has been little description of the mechanism for methane over-oxidation at the copper active sites of these zeolites. Using density functional theory (DFT) computations, we reported that tricopper [Cu3 O3 ]2+ active sites can over-oxidize methane. However, the role of [Cu3 O3 ]2+ sites in methane-to-methanol conversion remains under debate. Here, we examine methane over-oxidation by dicopper [Cu2 O]2+ and [Cu2 O2 ]2+ sites using DFT in zeolite mordenite (MOR). For [Cu2 O2 ]2+ , we considered the μ-(η2 :η2 ) peroxo-, and bis(μ-oxo) motifs. These sites were considered in the eight-membered (8MR) ring of MOR. μ-(η2 :η2 ) peroxo sites are unstable relative to the bis(μ-oxo) motif with a small interconversion barrier. Unlike [Cu2 O]2+ which is active for methane C-H activation, [Cu2 O2 ]2+ has a very large methane C-H activation barrier in the 8MR. Stabilization of methanol and methyl at unreacted dicopper sites however leads to over-oxidation via sequential hydrogen atom abstraction steps. For methanol, these are initiated by abstraction of the CH3 group, followed by OH and can proceed near 200 °C. Thus, for [Cu2 O]2+ and [Cu2 O2 ]2+ species, over-oxidation is an inter-site process. We discuss the implications of these findings for methanol selectivity, especially in comparison to the intra-site process for [Cu3 O3 ]2+ sites and the role of Brønsted acid sites.
Collapse
Affiliation(s)
- Dipak Panthi
- Department of Chemistry, University of Nevada Reno, 1664N. Virginia Street, Reno, NV 89557-0216, USA
| | - Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, 1664N. Virginia Street, Reno, NV 89557-0216, USA
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664N. Virginia Street, Reno, NV 89557-0216, USA
| |
Collapse
|
13
|
Fu L, Yuan M, Li X, Bian S, Mi L, Gao Z, Shi Q, Huang W, Zuo Z. The Influence of UiO‐bpy Skeleton for the Direct Methane‐to‐Methanol Conversion on Cu@UiO‐bpy: Importance of the Encapsulation Effect. ChemCatChem 2021. [DOI: 10.1002/cctc.202101244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lin Fu
- State Key Laboratory of Clean and Efficient Coal Utilization Taiyuan University of Technology Taiyuan 030024 Shanxi P. R. China
| | - Min Yuan
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan 030024 Shanxi P. R. China
| | - Xiaodong Li
- College of Chemistry and Chemical Engineering Jinzhong University Jinzhong 030619 P. R.China
| | - Shuai Bian
- State Key Laboratory of Clean and Efficient Coal Utilization Taiyuan University of Technology Taiyuan 030024 Shanxi P. R. China
| | - Le Mi
- State Key Laboratory of Clean and Efficient Coal Utilization Taiyuan University of Technology Taiyuan 030024 Shanxi P. R. China
| | - Zhihua Gao
- State Key Laboratory of Clean and Efficient Coal Utilization Taiyuan University of Technology Taiyuan 030024 Shanxi P. R. China
| | - Qi Shi
- College of Chemistry and Chemical Engineering Taiyuan University of Technology Taiyuan 030024 Shanxi P. R. China
| | - Wei Huang
- State Key Laboratory of Clean and Efficient Coal Utilization Taiyuan University of Technology Taiyuan 030024 Shanxi P. R. China
| | - Zhijun Zuo
- State Key Laboratory of Clean and Efficient Coal Utilization Taiyuan University of Technology Taiyuan 030024 Shanxi P. R. China
| |
Collapse
|
14
|
Sun Q, Wang N, Yu J. Advances in Catalytic Applications of Zeolite-Supported Metal Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104442. [PMID: 34611941 DOI: 10.1002/adma.202104442] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Zeolites possessing large specific surface areas, ordered micropores, and adjustable acidity/basicity have emerged as ideal supports to immobilize metal species with small sizes and high dispersities. In recent years, the zeolite-supported metal catalysts have been widely used in diverse catalytic processes, showing excellent activity, superior thermal/hydrothermal stability, and unique shape-selectivity. In this review, a comprehensive summary of the state-of-the-art achievements in catalytic applications of zeolite-supported metal catalysts are presented for important heterogeneous catalytic processes in the last five years, mainly including 1) the hydrogenation reactions (e.g., CO/CO2 hydrogenation, hydrogenation of unsaturated compounds, and hydrogenation of nitrogenous compounds); 2) dehydrogenation reactions (e.g., alkane dehydrogenation and dehydrogenation of chemical hydrogen storage materials); 3) oxidation reactions (e.g., CO oxidation, methane oxidation, and alkene epoxidation); and 4) other reactions (e.g., hydroisomerization reaction and selective catalytic reduction of NOx with ammonia reaction). Finally, some current limitations and future perspectives on the challenge and opportunity for this subject are pointed out. It is believed that this review will inspire more innovative research on the synthesis and catalysis of zeolite-supported metal catalysts and promote their future developments to meet the emerging demands for practical applications.
Collapse
Affiliation(s)
- Qiming Sun
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Jihong Yu
- Innovation Center for Chemical Sciences|College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
15
|
Mizuno SC, Dulnee S, Pereira TC, Passini RJ, Urquieta-Gonzalez EA, Gallo JMR, Santos JB, Bueno JM. Stepwise methane to methanol conversion: Effect of copper loading on the formation of active species in copper-exchanged mordenite. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Khramenkova E, Medvedev MG, Li G, Pidko EA. Unraveling the Nature of Extraframework Catalytic Ensembles in Zeolites: Flexibility and Dynamics of the Copper-Oxo Trimers in Mordenite. J Phys Chem Lett 2021; 12:10906-10913. [PMID: 34731568 PMCID: PMC8591661 DOI: 10.1021/acs.jpclett.1c03288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Extraframework cations define the chemical versatility of zeolite catalysts. Addressing their structural complexity and dynamic behavior represents one of the main fundamental challenges in the field. Herein, we present a computational approach for the identification and analysis of the accessible pool of intrazeolite extraframework complexes with a Cu/MOR catalyst as an industrially important model system. We employ ab initio molecular dynamics for capturing the ensemble of reactive isomers with the [Cu3O3]2+ stoichiometry confined in the mordenite channels. The high structural diversity of the generated isomers was ensured by concentrating the kinetic energy along the low-curvature directions of the potential energy surface (PES). Geometrically distinct [Cu3O3]2+ complexes were identified via a series of clustering procedures ensuring that one structure of each local minima is retained. The proposed procedure has resulted in a set of previously unknown peroxo-complexes, which are >50 kJ/mol more stable than the recently hypothesized chair-shaped structure. Our analysis demonstrates that the most stable peroxo-containing clusters can be formed under operando conditions from molecular oxygen and the Cu3O unit, similar to that in methane monooxygenase (MMO) enzymes.
Collapse
Affiliation(s)
- Elena
V. Khramenkova
- Inorganic
Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Michael G. Medvedev
- Zelinsky
Institute of Organic Chemistry RAS, Leninsky Prospect, 47, Moscow 119991, Russia
| | - Guanna Li
- Biobased
Chemistry & Technology, Wageningen University
& Research, 6708 PB Wageningen, The Netherlands
- Organic
Chemistry, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
17
|
Negahdar L, Omori NE, Quesne MG, Frogley MD, Cacho-Nerin F, Jones W, Price SWT, Catlow CRA, Beale AM. Elucidating the Significance of Copper and Nitrate Speciation in Cu-SSZ-13 for N 2O Formation during NH 3-SCR. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leila Negahdar
- Chemistry Department, University College of London, Gordon Street, London WC1H 0AJ, U.K
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX110FA, U.K
| | - Naomi E. Omori
- Chemistry Department, University College of London, Gordon Street, London WC1H 0AJ, U.K
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX110FA, U.K
| | - Matthew G. Quesne
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX110FA, U.K
| | - Mark D. Frogley
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Fernando Cacho-Nerin
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Wilm Jones
- Chemistry Department, University College of London, Gordon Street, London WC1H 0AJ, U.K
- Finden Ltd, Merchant House, 5 East St Helen Street, Abingdon, Oxfordshire OX14 5EG, U.K
| | - Stephen W. T. Price
- Finden Ltd, Merchant House, 5 East St Helen Street, Abingdon, Oxfordshire OX14 5EG, U.K
| | - C. Richard A. Catlow
- Chemistry Department, University College of London, Gordon Street, London WC1H 0AJ, U.K
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX110FA, U.K
| | - Andrew M. Beale
- Chemistry Department, University College of London, Gordon Street, London WC1H 0AJ, U.K
- Finden Ltd, Merchant House, 5 East St Helen Street, Abingdon, Oxfordshire OX14 5EG, U.K
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX110FA, U.K
| |
Collapse
|
18
|
Álvarez M, Marín P, Ordóñez S. Harnessing of Diluted Methane Emissions by Direct Partial Oxidation of Methane to Methanol over Cu/Mordenite. Ind Eng Chem Res 2021; 60:9409-9417. [PMID: 35273425 PMCID: PMC8900128 DOI: 10.1021/acs.iecr.1c01069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
![]()
The upgrading of diluted methane
emissions into valuable products
can be accomplished at low temperatures (200 °C) by the direct
partial oxidation of methanol over copper-exchanged zeolite catalysts.
The reaction has been studied in a continuous fixed-bed reactor loaded
with a Cu–mordenite catalyst, according to a three-step cyclic
process: adsorption of methane, desorption of methanol, and reactivation
of the catalyst. The purpose of the work is the use of methane emissions
as feedstocks, which is challenging due to their low methane concentration
and the presence of oxygen. Methane concentration had a marked influence
on methane adsorption and methanol production (decreased from 164
μmol/g Cu for pure methane to 19 μmol/g Cu for 5% methane).
The presence of oxygen, even in low concentrations (2.5%), reduced
methane adsorption drastically. However, methanol production was only
affected slightly (average decrease of 9%), concluding that methane
adsorbed on the active centers yielding methanol is not influenced
by oxygen.
Collapse
Affiliation(s)
- Mauro Álvarez
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería 8, 33006 Oviedo, Spain
| | - Pablo Marín
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería 8, 33006 Oviedo, Spain
| | - Salvador Ordóñez
- Catalysis, Reactors and Control Research Group (CRC), Department of Chemical and Environmental Engineering, University of Oviedo, Faculty of Chemistry, Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
19
|
Adeyiga O, Suleiman O, Odoh SO. Copper-Oxo Active Sites for Methane C-H Activation in Zeolites: Molecular Understanding of Impact of Methane Hydroxylation on UV-Vis Spectra. Inorg Chem 2021; 60:8489-8499. [PMID: 34097398 DOI: 10.1021/acs.inorgchem.0c03510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we analyze changes in the optical spectra of activated copper-exchanged zeolites during methane activation with the Tamm-Dancoff time-dependent density functional theory, TDA-DFT, while using the ωB2PLYP functional. Two active sites, [Cu2O]2+ and [Cu3O3]2+, were studied. For [Cu2O]+, the 22 700 cm-1 peak is associated with μ-oxo 2p → Cu 3d/4s charge transfer. Of the [Cu2O]2+ methane C-H activation intermediates that we examined, only [Cu-O(H)(H)-Cu] and [Cu-O(H)(CH3)-Cu] have spectra that match experimental observations. After methane activation, the μ-oxo 2p orbitals lose two electrons and become hybridized with methanol C 2p orbitals and/or H 1s orbitals. The frontier unoccupied orbitals become more Cu 4s/4p Rydberg-like, reducing overlap with occupied orbitals. These effects cause the disappearance of the 22 700 cm-1 peak. For [Cu3O3]2+, the exact structures of the species formed after methane activation are unknown. Thus, we considered eight possible structures. Several of these provide a significant decrease in intensity near 23 000-38 000 cm-1, as seen experimentally. Notably, these species involve either rebound of the separated methyl to a μ-oxo atom or its remote stabilization at a Brønsted acid site in exchange for the acidic proton. These spectral changes are caused by the same mechanism seen in [Cu2O]2+ and are likely responsible for the observed reduced intensities near 23 000-38 000 cm-1. Thus, TDA-DFT calculations with ωB2PLYP provide a molecular-level understanding of the evolution of copper-oxo active sites during methane-to-methanol conversion.
Collapse
Affiliation(s)
- Olajumoke Adeyiga
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Olabisi Suleiman
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
20
|
Khan WU, Yu IKM, Sun Y, Polson MIJ, Golovko V, Lam FLY, Ogino I, Tsang DCW, Yip ACK. Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116899. [PMID: 33743438 DOI: 10.1016/j.envpol.2021.116899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Development of non-noble metal cluster catalysts, aiming at concurrently high activity and stability, for emission control systems has been challenging because of sintering and overcoating of clusters on the support. In this work, we reported the role of well-dispersed copper nanoclusters supported on TiO2 in CO oxidation under industrially relevant operating conditions. The catalyst containing 0.15 wt% Cu on TiO2 (0.15 CT) exhibited a high dispersion (59.1%), a large specific surface area (381 m2/gCu), a small particle size (1.77 nm), and abundant active sites (75.8% Cu2O). The CO oxidation activity measured by the turnover frequency (TOF) was found to be enhanced from 0.60 × 10-3 to 3.22 × 10-3 molCO·molCu-1·s-1 as the copper loading decreased from 5 to 0.15 wt%. A CO conversion of approximately 60% was still observed in the supported cluster catalyst with a Cu loading of 5 wt% at 240 °C. No deactivation was observed for catalysts with low copper loading (0.15 and 0.30 CT) after 8 h of time-on-stream, which compares favorably with less stable Au cluster-based catalysts reported in the literature. In contrast, catalysts with high copper loading (0.75 and 5 CT) showed deactivation over time, which was ascribed to the increase in copper particle size due to metal cluster agglomeration. This study elucidated the size-activity threshold of TiO2-supported Cu cluster catalysts. It also demonstrated the potential of the supported Cu cluster catalyst at a typical temperature range of diesel engines at light-load. The supported Cu cluster catalyst could be a promising alternative to noble metal cluster catalysts for emission control systems.
Collapse
Affiliation(s)
- Wasim Ullah Khan
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| | - Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, Garching, 85748, Germany
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Matthew I J Polson
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Vladimir Golovko
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Frank L Y Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Isao Ogino
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
21
|
Adeyiga O, Odoh SO. Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group. Chemphyschem 2021; 22:1101-1109. [PMID: 33786957 DOI: 10.1002/cphc.202100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Indexed: 11/07/2022]
Abstract
Copper-exchanged zeolites are useful for stepwise conversion of methane to methanol at moderate temperatures. This process also generates some over-oxidation products like CO and CO2 . However, mechanistic pathways for methane over-oxidation by copper-oxo active sites in these zeolites have not been previously described. Adequate understanding of methane over-oxidation is useful for developing systems with higher methanol yields and selectivities. Here, we use density functional theory (DFT) to examine methane over-oxidation by [Cu3 O3 ]2+ active sites in zeolite mordenite MOR. The methyl group formed after activation of a methane C-H bond can be stabilized at a μ-oxo atom of the active site. This μ-(O-CH3 ) intermediate can undergo sequential hydrogen atom abstractions till eventual formation of a copper-monocarbonyl species. Adsorbed formaldehyde, water and formates are also formed during this process. The overall mechanistic path is exothermic, and all intermediate steps are facile at 200 °C. Release of CO from the copper-monocarbonyl costs only 3.4 kcal/mol. Thus, for high methanol selectivities, the methyl group from the first hydrogen atom abstraction step must be stabilized away from copper-oxo active sites. Indeed, it must be quickly trapped at an unreactive site (short diffusion lengths) while avoiding copper-oxo species (large paths between active sites). This stabilization of the methyl group away from the active sites is central to the high methanol selectivities obtained with stepwise methane-to-methanol conversion.
Collapse
Affiliation(s)
- Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557-0216, USA
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV 89557-0216, USA
| |
Collapse
|
22
|
McCarver GA, Rajeshkumar T, Vogiatzis KD. Computational catalysis for metal-organic frameworks: An overview. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213777] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Suleiman O, Panthi D, Adeyiga O, Odoh SO. Methane C-H Activation by [Cu 2O] 2+ and [Cu 3O 3] 2+ in Copper-Exchanged Zeolites: Computational Analysis of Redox Chemistry and X-ray Absorption Spectroscopy. Inorg Chem 2021; 60:6218-6227. [PMID: 33876934 DOI: 10.1021/acs.inorgchem.0c03693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an ongoing debate regarding the role of [Cu3O3]2+ in methane-to-methanol conversion by copper-exchanged zeolites. Here, we perform electronic structure analysis and localized orbital bonding analysis to probe the redox chemistry of its Cu and μ-oxo sites. Also, the X-ray absorption near-edge structure, XANES, of methane activation in [Cu3O3]2+ is compared to that of the more ubiquitous [Cu2O]2+. Methane C-H activation is associated with only the Cu2+/Cu+ redox couple in [Cu2O]2+. For [Cu3O3]2+, there is no basis for the Cu3+/Cu2+ couple's participation at the density functional theory ground state. In [Cu3O3]2+, there are many possible intrazeolite intermediates for methane activation. In the nine possibilities that we examined, methane activation is driven by a combination of the Cu2+/Cu+ and oxyl/O2- redox couples. Based on this, the Cu 1s-edge XANES spectra of [Cu2O]2+ and [Cu3O3]2+ should both have energy signatures of Cu2+ → Cu+ reduction during methane activation. This is indeed what we obtained from the calculated XANES spectra. [Cu2O]2+ and [Cu3O3]2+ intermediates with one Cu+ site are shifted by 0.9-1.7 eV, while those with two Cu+ sites are shifted by 3.0-4.2 eV. These are near a range of 2.5-3.2 eV observed experimentally after contacting methane with activated copper-exchanged zeolites. Thus, activation of methane by [Cu3O3]2+ will lead to formation of Cu+ sites. Importantly, for future quantitative XANES studies, involvement of O- + e- → O2- in [Cu3O3]2+ implies a disconnect between the overall reactivity and the number of electrons used in the Cu2+/Cu+ redox couple.
Collapse
Affiliation(s)
- Olabisi Suleiman
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Dipak Panthi
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
24
|
Broclawik E, Kozyra P, Mitoraj M, Radoń M, Rejmak P. Zeolites at the Molecular Level: What Can Be Learned from Molecular Modeling. Molecules 2021; 26:molecules26061511. [PMID: 33801999 PMCID: PMC8001918 DOI: 10.3390/molecules26061511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
This review puts the development of molecular modeling methods in the context of their applications to zeolitic active sites. We attempt to highlight the utmost necessity of close cooperation between theory and experiment, resulting both in advances in computational methods and in progress in experimental techniques.
Collapse
Affiliation(s)
- Ewa Broclawik
- Jerzy Haber Institute of Catalysis PAS, Niezapominajek 8, 30-239 Krakow, Poland
- Correspondence:
| | - Paweł Kozyra
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.K.); (M.M.); (M.R.)
| | - Mariusz Mitoraj
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.K.); (M.M.); (M.R.)
| | - Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.K.); (M.M.); (M.R.)
| | - Paweł Rejmak
- Laboratory of X-ray and Electron Microscopy Research, Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland;
| |
Collapse
|
25
|
Curtis K, Panthi D, Odoh SO. Time-Dependent Density Functional Theory Study of Copper(II) Oxo Active Sites for Methane-to-Methanol Conversion in Zeolites. Inorg Chem 2021; 60:1149-1159. [PMID: 33399001 DOI: 10.1021/acs.inorgchem.0c03279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Copper-exchanged zeolites are useful materials for step-wise methane-to-methanol conversion (MMC). However, methanol yields on copper-exchanged zeolites are often modest, spurring interest in the development of active-site species that are activated at moderate temperatures, afford greater yields, and provide excellent methanol selectivities. Ultraviolet-visible (UV-vis) spectroscopy is a major tool for characterizing the active-sites and their evolution during the step-wise MMC process. However, computation of the UV-vis spectra of the copper-oxo active sites using Tamm-Dancoff time-dependent density functional theory (TDA-DFT) can be quite problematic. This has led to utilization of expensive methods based on multireference approaches, Green functions, and the Bethe-Salpeter equation. In this work, we examined the optical spectra of [CuO]+, [Cu2O]2+, [Cu2O2]2+, and [Cu3O3]2+ species implicated in MMC in zeolites. For the larger species, we examined how agreement with experimental data is improved with increasingly larger cluster models. For [CuO]+, we compared TDA-DFT against restricted active space 2nd-order perturbation theory, RASPT2. We found that signature peaks for [CuO]+ have multireference behavior. The excited states have many configuration state functions with a double excitation character. These effects are likely responsible for the poor utility of conventional TDA-DFT methods. Indeed, we obtain good agreement with experimental data and RASPT2 after accounting for 2h/2p excitations within TDA-DFT with a previously described configuration interaction singles and doubles, CIS(D)-style scheme. This was the case for [CuO]+, [Cu2O]2+, as well as a [Cu2O2]2+ species. Using a long-range corrected double-hybrid, ωB2PLYP, we provide for the first time computational evidence for the experimental UV-vis spectrum of the [Cu3O3]2+ active site motif.
Collapse
Affiliation(s)
- Kevin Curtis
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Dipak Panthi
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
26
|
Adeyiga O, Panthi D, Odoh SO. Heterometallic [Cu–O–M] 2+ active sites for methane C–H activation in zeolites: stability, reactivity, formation mechanism and relationship to other active sites. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00687h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Formation energies and mechanisms, autoreduction and methane C–H reactivities were obtained for [Cu–O–M]2+ species (M = Ti–Cu, Zr–Mo and Ru–Ag) in mordenite with DFT. These reveal that [Cu2O]2+ is best suited for MMC.
Collapse
Affiliation(s)
| | - Dipak Panthi
- Department of Chemistry
- University of Nevada Reno
- Reno
- USA
| | | |
Collapse
|
27
|
Zhang Q, Yu J, Corma A. Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002927. [PMID: 32697378 DOI: 10.1002/adma.202002927] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Indexed: 05/21/2023]
Abstract
C1 chemistry, which is the catalytic transformation of C1 molecules including CO, CO2 , CH4 , CH3 OH, and HCOOH, plays an important role in providing energy and chemical supplies while meeting environmental requirements. Zeolites are highly efficient solid catalysts used in the chemical industry. The design and development of zeolite-based mono-, bi-, and multifunctional catalysts has led to a booming application of zeolite-based catalysts to C1 chemistry. Combining the advantages of zeolites and metallic catalytic species has promoted the catalytic production of various hydrocarbons (e.g., methane, light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from C1 molecules. The key zeolite descriptors that influence catalytic performance, such as framework topologies, nanoconfinement effects, Brønsted acidities, secondary-pore systems, particle sizes, extraframework cations and atoms, hydrophobicity and hydrophilicity, and proximity between acid and metallic sites are discussed to provide a deep understanding of the significance of zeolites to C1 chemistry. An outlook regarding challenges and opportunities for the conversion of C1 resources using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, València, 46022, Spain
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, València, 46022, Spain
| |
Collapse
|
28
|
VanNatta PE, Ramirez DA, Velarde AR, Ali G, Kieber-Emmons MT. Exceptionally High O–H Bond Dissociation Free Energy of a Dicopper(II) μ-Hydroxo Complex and Insights into the Geometric and Electronic Structure Origins Thereof. J Am Chem Soc 2020; 142:16292-16312. [DOI: 10.1021/jacs.0c06425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter E. VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - David A. Ramirez
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Andres R. Velarde
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Ghazanfar Ali
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | | |
Collapse
|
29
|
Identification of the active sites and mechanism for partial methane oxidation to methanol over copper-exchanged CHA zeolites. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9695-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Newton MA, Knorpp AJ, Sushkevich VL, Palagin D, van Bokhoven JA. Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chem Soc Rev 2020; 49:1449-1486. [DOI: 10.1039/c7cs00709d] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this critical review we examine the current state of our knowledge in respect of the nature of the active sites in copper containing zeolites for the selective conversion of methane to methanol.
Collapse
Affiliation(s)
- Mark A. Newton
- Institute for Chemical and Bioengineering
- ETH Zurich
- 8093 Zürich
- Switzerland
| | - Amy J. Knorpp
- Institute for Chemical and Bioengineering
- ETH Zurich
- 8093 Zürich
- Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institute
- 5232 Villigen
- Switzerland
| | - Dennis Palagin
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institute
- 5232 Villigen
- Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering
- ETH Zurich
- 8093 Zürich
- Switzerland
- Laboratory for Catalysis and Sustainable Chemistry
| |
Collapse
|
31
|
Tao L, Lee I, Sanchez-Sanchez M. Cu oxo nanoclusters for direct oxidation of methane to methanol: formation, structure and catalytic performance. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01325k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu oxo nanoclusters hosted in microporous solids have emerged in the past decades as promising materials for catalyzing the selective conversion of methane to methanol.
Collapse
Affiliation(s)
- Lei Tao
- Department of Chemistry and Catalysis Research Center
- Technische Universität München
- D-85748 Garching
- Germany
| | - Insu Lee
- Department of Chemistry and Catalysis Research Center
- Technische Universität München
- D-85748 Garching
- Germany
| | - Maricruz Sanchez-Sanchez
- Department of Chemistry and Catalysis Research Center
- Technische Universität München
- D-85748 Garching
- Germany
| |
Collapse
|
32
|
Wang G, Chen W, Huang L, Liu Z, Sun X, Zheng A. Reactivity descriptors of diverse copper-oxo species on ZSM-5 zeolite towards methane activation. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Lomachenko K, Martini A, Pappas D, Negri C, Dyballa M, Berlier G, Bordiga S, Lamberti C, Olsbye U, Svelle S, Beato P, Borfecchia E. The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: An operando XAS study. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.01.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Szécsényi Á, Khramenkova E, Chernyshov IY, Li G, Gascon J, Pidko EA. Breaking Linear Scaling Relationships with Secondary Interactions in Confined Space: A Case Study of Methane Oxidation by Fe/ZSM-5 Zeolite. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01914] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ágnes Szécsényi
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- King Abdullah University of Science and Technology, KAUST Catalysis Center, Advanced Catalytic Materials, Thuwal 23955, Saudi Arabia
| | - Elena Khramenkova
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russian Federation
| | - Ivan Yu. Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russian Federation
| | - Guanna Li
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jorge Gascon
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- King Abdullah University of Science and Technology, KAUST Catalysis Center, Advanced Catalytic Materials, Thuwal 23955, Saudi Arabia
| | - Evgeny A. Pidko
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russian Federation
| |
Collapse
|
35
|
Gaggioli CA, Stoneburner SJ, Cramer CJ, Gagliardi L. Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01775] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Carlo Alberto Gaggioli
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Samuel J. Stoneburner
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
36
|
Goncalves TJ, Plessow PN, Studt F. On the Accuracy of Density Functional Theory in Zeolite Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900791] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tiago J. Goncalves
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Felix Studt
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology Engesserstrasse 18 76131 Karlsruhe Germany
| |
Collapse
|
37
|
Park MB, Park ED, Ahn WS. Recent Progress in Direct Conversion of Methane to Methanol Over Copper-Exchanged Zeolites. Front Chem 2019; 7:514. [PMID: 31380355 PMCID: PMC6651145 DOI: 10.3389/fchem.2019.00514] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/04/2019] [Indexed: 11/17/2022] Open
Abstract
The conversion of methane into an easily transportable liquid fuel or chemicals has become a highly sought-after goal spurred by the increasing availability of cheap and abundant natural gas. While utilization of methane for the production of syngas and its subsequent conversion via an indirect route is typical, it is cost-intensive, and alternative direct conversion routes have been investigated actively. One of the most promising directions among these is the low-temperature partial oxidation of methane to methanol over a metal-loaded zeolite, which mimics facile enzymatic chemistry of methane oxidation. Thus mono-, bi-, and trinuclear oxide compounds of iron and copper stabilized on ZSM-5 or mordenite, which are structurally analogous to those found in methane monooxygenases, have demonstrated promising catalytic performances. The two major problems of theses metal-loaded zeolites are low yield to methanol and batch-like non-catalytic reaction systems challenging to extend to an industrial scale. In this mini-review, attention was given to the direct methane oxidation to methanol over copper-loaded zeolite systems. A brief introduction on the catalytic methane direct oxidation routes and current status of the applied metal-containing zeolites including the ones with copper ions are given. Next, by analyzing the extensive experimental and theoretical data available, the consensus among the researchers to achieve the target of high methanol yield is discussed in terms of zeolite topology, active species, and reaction parameters. Finally, the recent efforts on continuous methanol production from the direct methane oxidation aiming for an industrial process are summarized.
Collapse
Affiliation(s)
- Min Bum Park
- Innovation Center for Chemical Engineering, Department of Energy and Chemical Engineering, Incheon National University, Incheon, South Korea
| | - Eun Duck Park
- Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Suwon, South Korea
| | - Wha-Seung Ahn
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
38
|
Sushkevich VL, van Bokhoven JA. Methane-to-Methanol: Activity Descriptors in Copper-Exchanged Zeolites for the Rational Design of Materials. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01534] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
39
|
Brezicki G, Kammert JD, Gunnoe TB, Paolucci C, Davis RJ. Insights into the Speciation of Cu in the Cu-H-Mordenite Catalyst for the Oxidation of Methane to Methanol. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00852] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gordon Brezicki
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - James D. Kammert
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, McCormick Road,
P.O. Box 400319, Charlottesville, Virginia 22904-4741, United States
| | - Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| | - Robert J. Davis
- Department of Chemical Engineering, University of Virginia, 102 Engineer’s Way, P.O. Box 400741, Charlottesville, Virginia 22904-4741, United States
| |
Collapse
|
40
|
Lange JP, Sushkevich VL, Knorpp AJ, van Bokhoven JA. Methane-to-Methanol via Chemical Looping: Economic Potential and Guidance for Future Research. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01407] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean-Paul Lange
- Shell Projects and Technology, Grasweg 31, Amsterdam, 1031HW, The Netherlands
- Sustainable Process technology, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
| | - Amy J. Knorpp
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, Villigen PSI 5232, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| |
Collapse
|
41
|
Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy. Top Catal 2019. [DOI: 10.1007/s11244-019-01160-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Zhao Y, Yu F, Wang C, Zhou Z. Simultaneous Formation of cis- and trans-CH3OCu(OH) Intermediates in Methane Activation by Cu in Solid Ar. Inorg Chem 2019; 58:3237-3246. [DOI: 10.1021/acs.inorgchem.8b03322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yanying Zhao
- Department of Chemistry and State Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fan Yu
- Department of Chemistry and State Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caixia Wang
- Department of Chemistry and State Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhaoman Zhou
- Department of Chemistry and State Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
43
|
Oda A, Ohkubo T, Yumura T, Kobayashi H, Kuroda Y. Room-Temperature Activation of the C-H Bond in Methane over Terminal Zn II-Oxyl Species in an MFI Zeolite: A Combined Spectroscopic and Computational Study of the Reactive Frontier Molecular Orbitals and Their Origins. Inorg Chem 2019; 58:327-338. [PMID: 30495931 DOI: 10.1021/acs.inorgchem.8b02425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Oxygenase reactivity toward selective partial oxidation of CH4 to CH3OH requires an atomic oxygen-radical bound to metal (M-O•: oxyl intermediate) that is capable of abstracting an H atom from the significantly strong C-H bond in CH4. Because such a reaction is frequently observed in metal-doped zeolites, it has been recognized that the zeolite provides an environment that stabilizes the M-O• intermediate. However, no experimental data of M-O• have so far been discovered in the zeolite; thus, little is known about the correlation among the state of M-O•, its reactivity for CH4, and the nature of the zeolite environment. Here, we report a combined spectroscopic and computational study of the room-temperature activation of CH4 over ZnII-O• in the MFI zeolite. One ZnII-O• species does perform H-abstraction from CH4 at room temperature. The resultant CH3• species reacts with the other ZnII-O• site to form the ZnII-OCH3 species. The H2O-assisted extraction of surface methoxide yields 29 μmol g-1 of CH3OH with a 94% selectivity. The quantum mechanics (QM)/molecular mechanics (MM) calculation determined the central step as the oxyl-mediated hydrogen atom transfer which requires an activation energy of only 10 kJ mol-1. On the basis of the findings in gas-phase experiments regarding the CH4 activation by the free [M-O•]+ species, the remarkable H-abstraction reactivity of the ZnII-O• species in zeolites was totally rationalized. Additionally, the experimentally validated QM/MM calculation revealed that the zeolite lattice has potential as the ligand to enhance the polarization of the M-O• bond and thereby enables to create effectively the highly reactive M-O• bond required for low-temperature activation of CH4. The present study proposes that tuning of the polarization effect of the anchoring site over heterogeneous catalysts is the valuable way to create the oxyl-based functionality on the heterogeneous catalyst.
Collapse
Affiliation(s)
- Akira Oda
- Precursory Research for Embryonic Science and Technology , Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan.,Department of Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima , Kita-ku, Okayama 700-8530 , Japan
| | - Takahiro Ohkubo
- Department of Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima , Kita-ku, Okayama 700-8530 , Japan
| | - Takashi Yumura
- Department of Chemistry and Materials Technology , Kyoto Institute of Technology , Matsugasaki , Sakyo-ku, Kyoto 606-8585 , Japan
| | - Hisayoshi Kobayashi
- Department of Chemistry and Materials Technology , Kyoto Institute of Technology , Matsugasaki , Sakyo-ku, Kyoto 606-8585 , Japan
| | - Yasushige Kuroda
- Department of Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima , Kita-ku, Okayama 700-8530 , Japan
| |
Collapse
|
44
|
Mahyuddin MH, Shiota Y, Yoshizawa K. Methane selective oxidation to methanol by metal-exchanged zeolites: a review of active sites and their reactivity. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02414f] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A review of the recent progress in revealing the structures, formation, and reactivity of the active sites in Fe-, Co-, Ni- and Cu-exchanged zeolites as well as outlooks on future research challenges and opportunities is presented.
Collapse
Affiliation(s)
- Muhammad Haris Mahyuddin
- Institute for Materials Chemistry and Engineering and IRCCS
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and IRCCS
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
45
|
Dandu NK, Adeyiga O, Panthi D, Bird SA, Odoh SO. Performance of density functional theory for describing hetero-metallic active-site motifs for methane-to-methanol conversion in metal-exchanged zeolites. J Comput Chem 2018; 39:2667-2678. [PMID: 30379335 DOI: 10.1002/jcc.25714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/30/2018] [Accepted: 09/23/2018] [Indexed: 01/19/2023]
Abstract
Methane-to-methanol conversion (MMC) can be facilitated with high methanol selectivities by copper-exchanged zeolites. There are however two open questions regarding the use of these zeolites to facilitate the MMC process. The first concerns the possibility of operating the three cycles in the stepwise MMC process by these zeolites in an isothermal fashion. The second concerns the possibility of improving the methanol yields by systematic substitution of some copper centers in these active sites with other earth-abundant transition metals. Quantum-mechanical computations can be used to compare methane activation by copper oxide species and analogous mixed-metal systems. To carry out such screening, it is important that we use theoretical methods that are accurate and computationally affordable for describing the properties of the hetero-metallic catalytic species. We have examined the performance of 47 exchange-correlation density functionals for predicting the relative spin-state energies and chemical reactivities of six hetero-metallic [M-O-Cu]2+ and [M-O2 -Cu]2+ , (where MCo, Fe, and Ni), species by comparison with coupled cluster theory including iterative single, double excitations as well as perturbative treatment of triple excitations, CCSD(T). We also performed multireference calculations on some of these systems. We considered two types of reactions (hydrogen addition and oxygen addition) that are relevant to MMC. We recommend the use of τ-HCTH and OLYP to determine the spin-state energy splittings in the hetero-metallic motifs. ωB97, ωB97X, ωB97X-D3, and MN15 performed best for predicting the energies of the hydrogen and oxygen addition reactions. In contrast, local, and semilocal functionals do poorly for chemical reactivity. Using [Fe-O-Cu]2+ as a test, we see that the nonlocal functionals perform well for the methane CH activation barrier. In contrast, the semilocal functionals perform rather poorly. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naveen K Dandu
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0216
| | - Olajumoke Adeyiga
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0216
| | - Dipak Panthi
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0216
| | - Shaina A Bird
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0216
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada Reno, 1664 N. Virginia Street, Reno, Nevada, 89557-0216
| |
Collapse
|
46
|
Li G, Pidko EA. The Nature and Catalytic Function of Cation Sites in Zeolites: a Computational Perspective. ChemCatChem 2018. [DOI: 10.1002/cctc.201801493] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Guanna Li
- Department Chemical EngineeringDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
| | - Evgeny A. Pidko
- Department Chemical EngineeringDelft University of Technology Van der Maasweg 9 Delft 2629 HZ The Netherlands
- ITMO University Lomonosova str. 9 St. Petersburg 191002 Russia
| |
Collapse
|
47
|
Knorpp AJ, Pinar AB, Newton MA, Sushkevich VL, van Bokhoven JA. Copper-Exchanged Omega (MAZ) Zeolite: Copper-concentration Dependent Active Sites and its Unprecedented Methane to Methanol Conversion. ChemCatChem 2018. [DOI: 10.1002/cctc.201801809] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amy J. Knorpp
- Institute for Chemical and Bioengineering; ETH Zurich; Vladimir-Prelog-Weg 1 Zurich 8093 Switzerland
| | - Ana B. Pinar
- Laboratory for Catalysis and Sustainable Chemistry; Paul Scherrer Institute; Villigen 5232 Switzerland
| | - Mark A. Newton
- Institute for Chemical and Bioengineering; ETH Zurich; Vladimir-Prelog-Weg 1 Zurich 8093 Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry; Paul Scherrer Institute; Villigen 5232 Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering; ETH Zurich; Vladimir-Prelog-Weg 1 Zurich 8093 Switzerland
- Laboratory for Catalysis and Sustainable Chemistry; Paul Scherrer Institute; Villigen 5232 Switzerland
| |
Collapse
|
48
|
Mahyuddin MH, Shiota Y, Staykov A, Yoshizawa K. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Acc Chem Res 2018; 51:2382-2390. [PMID: 30207444 DOI: 10.1021/acs.accounts.8b00236] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As fossil-based energy sources become more depleted and with renewable-energy technologies still in a very early stage of development, the utilization of highly abundant methane as a transitional solution for current energy demands is highly important despite difficulties in transport and storage. Technologies enabling the conversion of methane to liquid/condensable energy carriers that can be easily transported and integrated into the existing chemical infrastructures are therefore essential. Although there commercially exists a two-step gas-to-liquid process involving syngas production, a novel route of methane conversion that can circumvent the high-cost production of syngas should be developed. Among all of the conceptually possible methods for converting methane to methanol, methane hydroxylation (CH4 + 1/2O2 → CH3OH) at low temperature seems to be the most viable since it provides a direct route of conversion and allows a much lower operational cost. However, it is hampered by the fact that the complete oxidation to CO2 is thermodynamically more favored. To overcome this, an effective catalyst that is able to "mildly" oxidize methane and stabilize the resultant methyl radical toward methanol formation is required. Particulate methane monooxygenase (pMMO) and copper-exchanged zeolites are two catalysts known to hydroxylate methane into methanol at low temperature with high selectivity. Having been studied for more than 30 years, these copper-cored catalysts are still relevant topics of discussion since the actual structure of the active sites has not been agreed upon, and thus, the reaction mechanism and factors influencing their reactivity and productivity are yet to be understood. Density functional theory (DFT) has provided us with a powerful computational tool for accomplishing these tasks. This Account presents an overview of the recent progress in the computational elucidation of the catalytic mechanism of methane hydroxylation by mono-, di-, and trinuclear copper sites in pMMO and Cu-exchanged zeolites as well as its correlations to the influencing factors that must be controlled to achieve higher reactivity. First, we briefly introduce the catalytic mechanism of a bare CuO+ cation as the simplest copper-oxo system in methane hydroxylation. The system is then extended to the copper-oxo species in pMMO and zeolites, and the radical and nonradical mechanisms are examined. Investigations of the reactivities of mononuclear and dinuclear copper-oxo species in the pMMO active site suggest that the bis(μ-oxo)CuIICuIII, (μ-oxo)(μ-hydroxo)CuIICuIII, and CuIIIO species are important for the catalytic activity of pMMO. In the case of Cu-exchanged zeolites, as the mono(μ-oxo)CuIICuII and tris(μ-oxo)CuIICuIIICuIII active sites have been fully characterized in experiments, here we discuss the effects of zeolite structures on the geometry and reactivity of the active sites.
Collapse
Affiliation(s)
- M. Haris Mahyuddin
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Aleksandar Staykov
- International Institute for Carbon-Neutral Energy Research, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
49
|
Knorpp AJ, Newton MA, Pinar AB, van Bokhoven JA. Conversion of Methane to Methanol on Copper Mordenite: Redox Mechanism of Isothermal and High-Temperature-Activation Procedures. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Amy J. Knorpp
- ETH Zurich, Wolfgang Paulistrasse 10, Zurich, CH-8093, Switzerland
| | - Mark A. Newton
- ETH Zurich, Wolfgang Paulistrasse 10, Zurich, CH-8093, Switzerland
| | - Ana B. Pinar
- Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| | - Jeroen A. van Bokhoven
- ETH Zurich, Wolfgang Paulistrasse 10, Zurich, CH-8093, Switzerland
- Paul Scherrer Institute, Villigen, CH-5232, Switzerland
| |
Collapse
|
50
|
Dinh KT, Sullivan MM, Serna P, Meyer RJ, Dincă M, Román-Leshkov Y. Viewpoint on the Partial Oxidation of Methane to Methanol Using Cu- and Fe-Exchanged Zeolites. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01180] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kimberly T. Dinh
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mark M. Sullivan
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pedro Serna
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Randall J. Meyer
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|