1
|
Cardia R, Dardenne N, Mula G, Pinna E, Rignanese GM, Charlier JC, Cappellini G. First-Principles Investigation of the Optical Properties of Eumelanin Protomolecules. J Phys Chem A 2023; 127:10797-10806. [PMID: 38109190 DOI: 10.1021/acs.jpca.3c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Using first-principles calculations, we investigate the absorption spectra (in the near-infrared, visible, and first UV range) of the two most probable eumelanin tetrameric molecules exhibiting either a linear open-chain or a cyclic porphyrine-like configuration. In order to simulate a realistic molecular system, an implicit solvent model is used in our calculations to mimic the effect of the solvated environment around the eumelanin molecule. Although the presence of solvent is found not to significantly affect the absorption pattern of both molecules, the onset of the spectra are shifted toward higher energies, especially for the linear tetramer. Interestingly, the absorption spectra and optical onsets of the two molecules differ significantly both in a vacuum and in ethanol. However, the two predicted spectra do not allow us to definitely discriminate between the two configurations when comparing the theoretical predictions with the available experimental spectrum. In addition, a mix of the two eumelanin configurations (close to fifty-fifty) leads to a maximum overlap between theoretical and experimental spectra. Consequently, this theoretical research shows that deeper insight can be gained using beyond DFT techniques on the real form of eumelanin protomolecules present in living systems as well as on their possible use in hybrid solar cells.
Collapse
Affiliation(s)
- Roberto Cardia
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
| | - Nicolas Dardenne
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Guido Mula
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
| | - Elisa Pinna
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
| | - Gian-Marco Rignanese
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
- European Theoretical Spectroscopy Facility (ETSF)
| | - Jean-Christophe Charlier
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
- European Theoretical Spectroscopy Facility (ETSF)
| | - Giancarlo Cappellini
- Department of Physics, Università degli Studi di Cagliari, Cittadella Universitaria I-09042 Monserrato, Cagliari, Italy
- European Theoretical Spectroscopy Facility (ETSF)
| |
Collapse
|
2
|
Marie A, Loos PF. A Similarity Renormalization Group Approach to Green's Function Methods. J Chem Theory Comput 2023; 19:3943-3957. [PMID: 37311565 PMCID: PMC10339683 DOI: 10.1021/acs.jctc.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 06/15/2023]
Abstract
The family of Green's function methods based on the GW approximation has gained popularity in the electronic structure theory thanks to its accuracy in weakly correlated systems combined with its cost-effectiveness. Despite this, self-consistent versions still pose challenges in terms of convergence. A recent study [Monino and Loos J. Chem. Phys. 2022, 156, 231101.] has linked these convergence issues to the intruder-state problem. In this work, a perturbative analysis of the similarity renormalization group (SRG) approach is performed on Green's function methods. The SRG formalism enables us to derive, from first-principles, the expression of a naturally static and Hermitian form of the self-energy that can be employed in quasiparticle self-consistent GW (qsGW) calculations. The resulting SRG-based regularized self-energy significantly accelerates the convergence of qsGW calculations, slightly improves the overall accuracy, and is straightforward to implement in existing code.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31400 Toulouse, France
| |
Collapse
|
3
|
Knysh I, Villalobos-Castro JDJ, Duchemin I, Blase X, Jacquemin D. Exploring Bethe-Salpeter Excited-State Dipoles: The Challenging Case of Increasingly Long Push-Pull Oligomers. J Phys Chem Lett 2023; 14:3727-3734. [PMID: 37042642 DOI: 10.1021/acs.jpclett.3c00699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The change of molecular dipole moment induced by photon absorption is key to interpret the measured optical spectra. Except for compact molecules, time-dependent density functional theory (TD-DFT) remains the only theory allowing to quickly predict excited-state dipoles (μES), albeit with a strong dependency on the selected exchange-correlation functional. This Letter presents the first assessment of the performances of the many-body Green's function Bethe-Salpeter equation (BSE) formalism for the evaluation of the μES. We explore increasingly long push-pull oligomers as they present an excited-state nature evolving with system size. This work shows that BSE's μES do present the same evolution with oligomeric length as their CC2 and CCSD counterparts, with a dependency on the starting exchange-correlation functional that is strongly decreased as compared to TD-DFT. This Letter demonstrates that BSE is a valuable alternative to TD-DFT for properties related to the excited-state density and not only for transition energies and oscillator strengths.
Collapse
Affiliation(s)
- Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | | | - Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France
| | - Xavier Blase
- Université Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
4
|
Orlando R, Romaniello P, Loos PF. Exploring new exchange-correlation kernels in the Bethe–Salpeter equation: A study of the asymmetric Hubbard dimer. ADVANCES IN QUANTUM CHEMISTRY 2023. [DOI: 10.1016/bs.aiq.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Quintero-Monsebaiz R, Monino E, Marie A, Loos PF. Connections between many-body perturbation and coupled-cluster theories. J Chem Phys 2022; 157:231102. [PMID: 36550046 DOI: 10.1063/5.0130837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Here, we build on the works of Scuseria et al. [J. Chem. Phys. 129, 231101 (2008)] and Berkelbach [J. Chem. Phys. 149, 041103 (2018)] to show connections between the Bethe-Salpeter equation (BSE) formalism combined with the GW approximation from many-body perturbation theory and coupled-cluster (CC) theory at the ground- and excited-state levels. In particular, we show how to recast the GW and Bethe-Salpeter equations as non-linear CC-like equations. Similitudes between BSE@GW and the similarity-transformed equation-of-motion CC method are also put forward. The present work allows us to easily transfer key developments and the general knowledge gathered in CC theory to many-body perturbation theory. In particular, it may provide a path for the computation of ground- and excited-state properties (such as nuclear gradients) within the GW and BSE frameworks.
Collapse
Affiliation(s)
- Raúl Quintero-Monsebaiz
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Enzo Monino
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Antoine Marie
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
6
|
Förster A, Visscher L. Quasiparticle Self-Consistent GW-Bethe-Salpeter Equation Calculations for Large Chromophoric Systems. J Chem Theory Comput 2022; 18:6779-6793. [PMID: 36201788 PMCID: PMC9648197 DOI: 10.1021/acs.jctc.2c00531] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The GW-Bethe–Salpeter equation
(BSE) method
is promising for calculating the low-lying excitonic states of molecular
systems. However, so far it has only been applied to rather small
molecules and in the commonly implemented diagonal approximations
to the electronic self-energy, it depends on a mean-field starting
point. We describe here an implementation of the self-consistent and
starting-point-independent quasiparticle self-consistent (qsGW)-BSE approach, which is suitable for calculations on
large molecules. We herein show that eigenvalue-only self-consistency
can lead to an unfaithful description of some excitonic states for
chlorophyll dimers while the qsGW-BSE vertical excitation
energies (VEEs) are in excellent agreement with spectroscopic experiments
for chlorophyll monomers and dimers measured in the gas phase. Furthermore,
VEEs from time-dependent density functional theory calculations tend
to disagree with experimental values and using different range-separated
hybrid (RSH) kernels does change the VEEs by up to 0.5 eV. We use
the new qsGW-BSE implementation to calculate the
lowest excitation energies of the six chromophores of the photosystem
II (PSII) reaction center (RC) with nearly 2000 correlated electrons.
Using more than 11,000 (6000) basis functions, the calculation could
be completed in less than 5 (2) days on a single modern compute node.
In agreement with previous TD-DFT calculations using RSH kernels on
models that also do not include environmental effects, our qsGW-BSE calculations only yield states with local characters
in the low-energy spectrum of the hexameric complex. Earlier works
with RSH kernels have demonstrated that the protein environment facilitates
the experimentally observed interchromophoric charge transfer. Therefore,
future research will need to combine correlation effects beyond TD-DFT
with an explicit treatment of environmental electrostatics.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HVAmsterdam, The Netherlands
| | - Lucas Visscher
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HVAmsterdam, The Netherlands
| |
Collapse
|
7
|
Förster A. Assessment of the Second-Order Statically Screened Exchange Correction to the Random Phase Approximation for Correlation Energies. J Chem Theory Comput 2022; 18:5948-5965. [PMID: 36150190 PMCID: PMC9558381 DOI: 10.1021/acs.jctc.2c00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
With increasing interelectronic distance, the screening
of the
electron–electron interaction by the presence of other electrons
becomes the dominant source of electron correlation. This effect is
described by the random phase approximation (RPA) which is therefore
a promising method for the calculation of weak interactions. The success
of the RPA relies on the cancellation of errors, which can be traced
back to the violation of the crossing symmetry of the 4-point vertex,
leading to strongly overestimated total correlation energies. By the
addition of second-order screened exchange (SOSEX) to the correlation
energy, this issue is substantially reduced. In the adiabatic connection
(AC) SOSEX formalism, one of the two electron–electron interaction
lines in the second-order exchange term is dynamically screened (SOSEX(W, vc)). A
related SOSEX expression in which both electron–electron interaction
lines are statically screened (SOSEX(W(0), W(0))) is obtained from the G3W2 contribution to the electronic self-energy. In contrast to SOSEX(W, vc), the
evaluation of this correlation energy expression does not require
an expensive numerical frequency integration and is therefore advantageous
from a computational perspective. We compare the accuracy of the statically
screened variant to RPA and RPA+SOSEX(W, vc) for a wide range of chemical
reactions. While both methods fail for barrier heights, SOSEX(W(0), W(0)) agrees very well with SOSEX(W, vc) for
charged excitations and noncovalent interactions where they lead to
major improvements over RPA.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Monino E, Loos PF. Unphysical discontinuities, intruder states and regularization in GW methods. J Chem Phys 2022; 156:231101. [PMID: 35732525 DOI: 10.1063/5.0089317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By recasting the non-linear frequency-dependent GW quasiparticle equation into a linear eigenvalue problem, we explain the appearance of multiple solutions and unphysical discontinuities in various physical quantities computed within the GW approximation. Considering the GW self-energy as an effective Hamiltonian, it is shown that these issues are key signatures of strong correlation in the (N ± 1)-electron states and can be directly related to the intruder state problem. A simple and efficient regularization procedure inspired by the similarity renormalization group is proposed to avoid such issues and speed up the convergence of partially self-consistent GW calculations.
Collapse
Affiliation(s)
- Enzo Monino
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
9
|
Loos PF, Romaniello P. Static and dynamic Bethe-Salpeter equations in the T-matrix approximation. J Chem Phys 2022; 156:164101. [PMID: 35490009 DOI: 10.1063/5.0088364] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
While the well-established GW approximation corresponds to a resummation of the direct ring diagrams and is particularly well suited for weakly correlated systems, the T-matrix approximation does sum ladder diagrams up to infinity and is supposedly more appropriate in the presence of strong correlation. Here, we derive and implement, for the first time, the static and dynamic Bethe-Salpeter equations when one considers T-matrix quasiparticle energies and a T-matrix-based kernel. The performance of the static scheme and its perturbative dynamical correction are assessed by computing the neutral excited states of molecular systems. A comparison with more conventional schemes as well as other wave function methods is also reported. Our results suggest that the T-matrix-based formalism performs best in few-electron systems where the electron density remains low.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pina Romaniello
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
10
|
Franzke YJ, Holzer C, Mack F. NMR Coupling Constants Based on the Bethe-Salpeter Equation in the GW Approximation. J Chem Theory Comput 2022; 18:1030-1045. [PMID: 34981925 DOI: 10.1021/acs.jctc.1c00999] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the first steps to extend the Green's function GW method and the Bethe-Salpeter equation (BSE) to molecular response properties such as nuclear magnetic resonance (NMR) indirect spin-spin coupling constants. We discuss both a nonrelativistic one-component and a quasi-relativistic two-component formalism. The latter describes scalar-relativistic and spin-orbit effects and allows us to study heavy-element systems with reasonable accuracy. Efficiency is maintained by the application of the resolution of the identity approximation throughout. The performance is demonstrated using conventional central processing units (CPUs) and modern graphics processing units (GPUs) for molecules involving several thousand basis functions. Our results show that a large amount of Hartree-Fock exchange is vital to provide a sufficient Kohn-Sham starting point to compute the GW quasi-particle energies. As the GW-BSE approach is generally less accurate for triplet excitations or related properties such as the Fermi-contact interaction, the admixture of the Kohn-Sham correlation kernel through the contracted BSE (cBSE) method improves the results for NMR coupling constants. This leads to remarkable results when combined with the eigenvalue-only self-consistent variant (evGW) and Becke's half and half functional (BH&HLYP) or the CAM-QTP family. The developed methodology is used to calculate the Karplus curve of tin molecules, illustrating its applicability to extended chemically relevant molecules. Here, the GW-cBSE method improves upon the chosen BH&HLYP Kohn-Sham starting points.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Rodríguez-Mayorga M, Mitxelena I, Bruneval F, Piris M. Coupling Natural Orbital Functional Theory and Many-Body Perturbation Theory by Using Nondynamically Correlated Canonical Orbitals. J Chem Theory Comput 2021; 17:7562-7574. [PMID: 34806362 DOI: 10.1021/acs.jctc.1c00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We develop a new family of electronic structure methods for capturing at the same time the dynamic and nondynamic correlation effects. We combine the natural orbital functional theory (NOFT) and many-body perturbation theory (MBPT) through a canonicalization procedure applied to the natural orbitals to gain access to any MBPT approximation. We study three different scenarios: corrections based on second-order Møller-Plesset (MP2), random-phase approximation (RPA), and coupled-cluster singles doubles (CCSD). Several chemical problems involving different types of electron correlation in singlet and multiplet spin states have been considered. Our numerical tests reveal that RPA-based and CCSD-based corrections provide similar relative errors in molecular dissociation energies (De) to the results obtained using a MP2 correction. With respect to the MP2 case, the CCSD-based correction improves the prediction, while the RPA-based correction reduces the computational cost.
Collapse
Affiliation(s)
- Mauricio Rodríguez-Mayorga
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif Sur Yvette, France.,Department of Theoretical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Ion Mitxelena
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Fabien Bruneval
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif Sur Yvette, France
| | - Mario Piris
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Euskadi, Spain
| |
Collapse
|
12
|
Di Sabatino S, Loos PF, Romaniello P. Scrutinizing GW-Based Methods Using the Hubbard Dimer. Front Chem 2021; 9:751054. [PMID: 34778206 PMCID: PMC8586429 DOI: 10.3389/fchem.2021.751054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
Using the simple (symmetric) Hubbard dimer, we analyze some important features of the GW approximation. We show that the problem of the existence of multiple quasiparticle solutions in the (perturbative) one-shot GW method and its partially self-consistent version is solved by full self-consistency. We also analyze the neutral excitation spectrum using the Bethe-Salpeter equation (BSE) formalism within the standard GW approximation and find, in particular, that 1) some neutral excitation energies become complex when the electron-electron interaction U increases, which can be traced back to the approximate nature of the GW quasiparticle energies; 2) the BSE formalism yields accurate correlation energies over a wide range of U when the trace (or plasmon) formula is employed; 3) the trace formula is sensitive to the occurrence of complex excitation energies (especially singlet), while the expression obtained from the adiabatic-connection fluctuation-dissipation theorem (ACFDT) is more stable (yet less accurate); 4) the trace formula has the correct behavior for weak (i.e., small U) interaction, unlike the ACFDT expression.
Collapse
Affiliation(s)
- S. Di Sabatino
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS and ETSF, Toulouse, France
| | - P.-F. Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - P. Romaniello
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS and ETSF, Toulouse, France
| |
Collapse
|
13
|
Wong ZC, Ungur L. Exploring vibronic coupling in the benzene radical cation and anion with different levels of the GW approximation. Phys Chem Chem Phys 2021; 23:19054-19070. [PMID: 34612443 DOI: 10.1039/d1cp02795f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linear vibronic coupling constants of the benzene radical cation and anion have been obtained with different levels of the GW approximation, including G0W0, eigenvalue self-consistent GW, and quasiparticle self-consistent GW, as well as DFT with the following exchange-correlation functionals: BLYP, B3LYP, CAM-B3LYP, tuned CAM-B3LYP, and an IP-tuned CAM-B3LYP functional. The vibronic coupling constants were calculated numerically using the gradients of the eigenvalues of the degenerate HOMOs and LUMOs of the neutral benzene molecule for DFT, while the numerical gradients of the quasiparticle energies were used in the case of GW. The results were evaluated against those of high level wave function methods in the literature, and the approximate self-consistent GW methods and G0W0 with long-range corrected functionals were found to yield the best results on the whole.
Collapse
Affiliation(s)
- Zi Cheng Wong
- Department of Chemistry, National University of Singapore, Block S8 Level 3, 3 Science Drive 3, 117543, Singapore.
| | | |
Collapse
|
14
|
Monino E, Loos PF. Spin-Conserved and Spin-Flip Optical Excitations from the Bethe-Salpeter Equation Formalism. J Chem Theory Comput 2021; 17:2852-2867. [PMID: 33724811 PMCID: PMC8154368 DOI: 10.1021/acs.jctc.1c00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
Like adiabatic time-dependent
density-functional theory (TD-DFT),
the Bethe–Salpeter equation (BSE) formalism of many-body perturbation
theory, in its static approximation, is “blind” to double
(and higher) excitations, which are ubiquitous, for example, in conjugated
molecules like polyenes. Here, we apply the spin-flip ansatz (which considers the lowest triplet state as the reference configuration
instead of the singlet ground state) to the BSE formalism in order
to access, in particular, double excitations. The present scheme is
based on a spin-unrestricted version of the GW approximation
employed to compute the charged excitations and screened Coulomb potential
required for the BSE calculations. Dynamical corrections to the static
BSE optical excitations are taken into account via an unrestricted
generalization of our recently developed (renormalized) perturbative
treatment. The performance of the present spin-flip BSE formalism
is illustrated by computing excited-state energies of the beryllium
atom, the hydrogen molecule at various bond lengths, and cyclobutadiene
in its rectangular and square-planar geometries.
Collapse
Affiliation(s)
- Enzo Monino
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Route de Narbonne, 31062 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
15
|
Kshirsagar AR, Blase X, Attaccalite C, Poloni R. Strongly Bound Excitons in Metal-Organic Framework MOF-5: A Many-Body Perturbation Theory Study. J Phys Chem Lett 2021; 12:4045-4051. [PMID: 33881873 DOI: 10.1021/acs.jpclett.1c00543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
During the past years, one of the most iconic metal-organic frameworks (MOFs), MOF-5, has been characterized as a semiconductor by theory and experiments. Here we employ the GW many-body perturbation theory in conjunction with the Bethe-Salpeter equation to compute the electronic structure and optical properties of this MOF. The GW calculations show that MOF-5 is a wide-band-gap insulator with a fundamental gap of ∼8 eV. The strong excitonic effects, arising from highly localized states and low screening, result in an optical gap of 4.5 eV and in an optical absorption spectrum in excellent agreement with experiments. The origin of the incorrect conclusion reported by past studies and the implication of this result are also discussed.
Collapse
Affiliation(s)
| | - Xavier Blase
- CNRS, Institut Néel, Univ. Grenoble Alpes, 38042 Grenoble, France
| | - Claudio Attaccalite
- Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325CNRS/Aix-Marseille Université and European Theoretical Spectroscopy Facility (ETSF), Campus de Luminy, 13288 Cedex 9 Marseille, France
| | - Roberta Poloni
- CNRS, Grenoble-INP, SIMaP, Univ. Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
16
|
Bruneval F, Rodriguez-Mayorga M, Rinke P, Dvorak M. Improved One-Shot Total Energies from the Linearized GW Density Matrix. J Chem Theory Comput 2021; 17:2126-2136. [PMID: 33705127 DOI: 10.1021/acs.jctc.0c01264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The linearized GW density matrix (γGW) is an efficient method to improve the static portion of the self-energy compared to that of ordinary perturbative GW while keeping the single-shot simplicity of the calculation. Previous work has shown that γGW gives an improved Fock operator and total energy components that approach the self-consistent GW quality. Here, we test γGW for dimer dissociation for the first time by studying N2, LiH, and Be2. We also calculate a set of self-consistent GW results in identical basis sets for a direct and consistent comparison. γGW approaches self-consistent GW total energies for a starting point based on a high amount of exact exchange. We also compare the accuracy of different total energy functionals, which differ when evaluated with a non-self-consistent density or density matrix. While the errors in total energies among different functionals and starting points are small, the individual energy components show noticeable errors when compared to reference data. The energy component errors of γGW are smaller than functionals of the density and we suggest that the linearized GW density matrix is a route to improving total energy evaluations in the adiabatic connection framework.
Collapse
Affiliation(s)
- Fabien Bruneval
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette, France
| | - Mauricio Rodriguez-Mayorga
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette, France
| | - Patrick Rinke
- Department of Applied Physics, Aalto University School of Science, 00076 Aalto, Finland
| | - Marc Dvorak
- Department of Applied Physics, Aalto University School of Science, 00076 Aalto, Finland
| |
Collapse
|
17
|
Çaylak O, Baumeier B. Excited-State Geometry Optimization of Small Molecules with Many-Body Green's Functions Theory. J Chem Theory Comput 2021; 17:879-888. [PMID: 33399447 PMCID: PMC7876808 DOI: 10.1021/acs.jctc.0c01099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We present a benchmark study of gas
phase geometry optimizations
in the excited states of carbon monoxide, acetone, acrolein, and methylenecyclopropene
using many-body Green’s functions theory within the GW approximation and the Bethe–Salpeter equation
(BSE) employing numerical gradients. We scrutinize the influence of
several typical approximations in the GW-BSE framework;
we used one-shot G0W0 or eigenvalue self-consistent evGW, employing
a fully analytic approach or plasmon-pole model for the frequency
dependence of the electron self-energy, or performing the BSE step
within the Tamm–Dancoff approximation. The obtained geometries
are compared to reference results from multireference perturbation
theory (CASPT2), variational Monte Carlo (VMC) method, second-order
approximate coupled cluster (CC2) method, and time-dependent density-functional
theory (TDDFT). We find overall a good agreement of the structural
parameters optimized with the GW-BSE calculations
with CASPT2, with an average relative error of around 1% for the G0W0 and 1.5% for
the evGW variants based on a PBE0 ground state, respectively,
while the other approximations have negligible influence. The relative
errors are also smaller than those for CC2 and TDDFT with different
functionals and only larger than VMC, indicating that the GW-BSE method does not only yield excitation energies but
also geometries in good agreement with established higher-order wave
function methods.
Collapse
Affiliation(s)
- Onur Çaylak
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Björn Baumeier
- Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
18
|
Berger JA, Loos PF, Romaniello P. Potential Energy Surfaces without Unphysical Discontinuities: The Coulomb Hole Plus Screened Exchange Approach. J Chem Theory Comput 2020; 17:191-200. [DOI: 10.1021/acs.jctc.0c00896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Arjan Berger
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, and European Theoretical Spectroscopy Facility (ETSF), Toulouse 31062, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Pina Romaniello
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, and European Theoretical Spectroscopy Facility (ETSF), Toulouse 31062, France
| |
Collapse
|
19
|
Blase X, Duchemin I, Jacquemin D, Loos PF. The Bethe-Salpeter Equation Formalism: From Physics to Chemistry. J Phys Chem Lett 2020; 11:7371-7382. [PMID: 32787315 DOI: 10.1021/acs.jpclett.0c01875] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Bethe-Salpeter equation (BSE) formalism is steadily asserting itself as a new efficient and accurate tool in the ensemble of computational methods available to chemists in order to predict optical excitations in molecular systems. In particular, the combination of the so-called GW approximation, giving access to reliable ionization energies and electron affinities, and the BSE formalism, able to model UV/vis spectra, has shown to provide accurate singlet excitation energies with a typical error of 0.1-0.3 eV. With a similar computational cost as time-dependent density-functional theory (TD-DFT), BSE is able to provide an accuracy on par with the most accurate global and range-separated hybrid functionals without the unsettling choice of the exchange-correlation functional, resolving further known issues (e.g., charge-transfer excitations). In this Perspective, we provide a historical overview of BSE, with a particular focus on its condensed-matter roots. We also propose a critical review of its strengths and weaknesses in different chemical situations.
Collapse
Affiliation(s)
- Xavier Blase
- Université Grenoble Alpes, CNRS, Institut NEEL, F-38042 Grenoble, France
| | - Ivan Duchemin
- Université Grenoble Alpes, CEA, IRIG-MEM-L Sim, 38054 Grenoble, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|