1
|
Laurien M, Mende L, Luhrmann L, Frederiksen A, Aldag M, Spiecker L, Clemmesen C, Solov'yov IA, Gerlach G. Magnetic orientation in juvenile Atlantic herring ( Clupea harengus) could involve cryptochrome 4 as a potential magnetoreceptor. J R Soc Interface 2024; 21:20240035. [PMID: 38835248 DOI: 10.1098/rsif.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
The Earth's magnetic field can provide reliable directional information, allowing migrating animals to orient themselves using a magnetic compass or estimate their position relative to a target using map-based orientation. Here we show for the first time that young, inexperienced herring (Clupea harengus, Ch) have a magnetic compass when they migrate hundreds of kilometres to their feeding grounds. In birds, such as the European robin (Erithacus rubecula), radical pair-based magnetoreception involving cryptochrome 4 (ErCRY4) was demonstrated; the molecular basis of magnetoreception in fish is still elusive. We show that cry4 expression in the eye of herring is upregulated during the migratory season, but not before, indicating a possible use for migration. The amino acid structure of herring ChCRY4 shows four tryptophans and a flavin adenine dinucleotide-binding site, a prerequisite for a magnetic receptor. Using homology modelling, we successfully reconstructed ChCRY4 of herring, DrCRY4 of zebrafish (Danio rerio) and StCRY4 of brown trout (Salmo trutta) and showed that ChCRY4, DrCRY4 and ErCRY4a, but not StCRY4, exhibit very comparable dynamic behaviour. The electron transfer could take place in ChCRY4 in a similar way to ErCRY4a. The combined behavioural, transcriptomic and simulation experiments provide evidence that CRY4 could act as a magnetoreceptor in Atlantic herring.
Collapse
Affiliation(s)
- Malien Laurien
- Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Lara Mende
- Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Lena Luhrmann
- Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Anders Frederiksen
- Institute of Physics, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Mandus Aldag
- Institute of Physics, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Lisa Spiecker
- Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Catriona Clemmesen
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel , Kiel 24105, Germany
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| | - Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg , Oldenburg 26111, Germany
| |
Collapse
|
2
|
Frederiksen A, Langebrake C, Hanić M, Manthey G, Mouritsen H, Liedvogel M, Solov’yov IA. Mutational Study of the Tryptophan Tetrad Important for Electron Transfer in European Robin Cryptochrome 4a. ACS OMEGA 2023; 8:26425-26436. [PMID: 37521624 PMCID: PMC10373462 DOI: 10.1021/acsomega.3c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
The ability of migratory birds to sense magnetic fields has been known for decades, although the understanding of the underlying mechanism is still elusive. Currently, the strongest magnetoreceptor candidate in birds is a protein called cryptochrome 4a. The cryptochrome 4a protein has changed through evolution, apparently endowing some birds with a more pronounced magnetic sensitivity than others. Using phylogenetic tools, we show that a specific tryptophan tetrad and a tyrosine residue predicted to be essential for cryptochrome activation are highly conserved in the avian clade. Through state-of-the-art molecular dynamics simulations and associated analyses, we also studied the role of these specific residues and the associated mutants on the overall dynamics of the protein. The analyses of the single residue mutations were used to judge how far a local change in the protein structure can impact specific dynamics of European robin cryptochrome 4a. We conclude that the replacements of each of the tryptophans one by one with a phenylalanine do not compromise the overall stability of the protein.
Collapse
Affiliation(s)
- Anders Frederiksen
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Corinna Langebrake
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Maja Hanić
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Georg Manthey
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Henrik Mouritsen
- Department
of Biology and Environmental Sciences, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Miriam Liedvogel
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
- Department
of Biology and Environmental Sciences, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- MPRG
Behavioural Genomics, Max Planck Institute
for Evolutionary Biology, August-Thienemann-Str. 2, Plön 24306, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Department
of Physics, Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, Oldenburg 26129, Germany
| |
Collapse
|
3
|
Wu JY, Hu XY, Zhu HY, Deng RQ, Ai Q. A Bionic Compass Based on Multiradicals. J Phys Chem B 2022; 126:10327-10334. [PMID: 36448780 DOI: 10.1021/acs.jpcb.2c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The underlying chemical and physical mechanism of avian navigation is an important issue of broad interest. One of the most famous candidates is the radical-pair mechanism, which shows that the magnetoreception is achieved by detecting the amount of chemical-reaction product from the singlet state. In the hypothesis, the surrounding nuclear spins play an important role as inducing the coherent transition between the singlet and triplet states. Recently, it was suggested that a multiradical model beyond two radicals can also realize magnetoreception without the assistance of nuclear spins. Inspired by this discovery, we explore the amount of the singlet recombination product in a multiradical model, with a radical bath described by the Lipkin-Meshkov-Glick (LMG) model, which was originally proposed for quantum phase transition (QPT). We show that the sensitivity of the bionic compass can be improved at the critical point. Our results may pave the way for the exploration of the design principle of the bionic compass.
Collapse
Affiliation(s)
- Jia-Yi Wu
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing100875, China
| | - Xin-Yuan Hu
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing100875, China
| | - Hai-Yuan Zhu
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing100875, China
| | - Ru-Qiong Deng
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing100875, China
| | - Qing Ai
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing100875, China
| |
Collapse
|
4
|
Hanić M, Schuhmann F, Frederiksen A, Langebrake C, Manthey G, Liedvogel M, Xu J, Mouritsen H, Solov'yov IA. Computational Reconstruction and Analysis of Structural Models of Avian Cryptochrome 4. J Phys Chem B 2022; 126:4623-4635. [PMID: 35704801 DOI: 10.1021/acs.jpcb.2c00878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recent study by Xu et al. (Nature, 2021, 594, 535-540) provided strong evidence that cryptochrome 4 (Cry4) is a key protein to endow migratory birds with the magnetic compass sense. The investigation compared the magnetic field response of Cry4 from migratory and nonmigratory bird species and suggested that a difference in magnetic sensitivity could exist. This finding prompted an in-depth investigation into Cry4 protein differences on the structural and dynamic levels. In the present study, the pigeon Cry4 (ClCry4) crystal structure was used to reconstruct the missing avian Cry4 protein structures via homology modeling for carefully selected bird species. The reconstructed Cry4 structure from European robin, Eurasian blackcap, zebra finch, chicken, and pigeon were subsequently simulated dynamically and analyzed. The studied avian Cry4 structures show flexibility in analogous regions pointing to similar activation mechanisms and/or signaling interaction partners. It can be concluded that the experimentally recorded difference in the magnetic field sensitivity of Cry4 from different birds is unlikely to be due to solely intrinsic dynamics of the proteins but requires additional factors that have not yet been identified.
Collapse
Affiliation(s)
- Maja Hanić
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Fabian Schuhmann
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Anders Frederiksen
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Corinna Langebrake
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Georg Manthey
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Miriam Liedvogel
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany.,Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Jingjing Xu
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Henrik Mouritsen
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany.,Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Institut für Physik, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Schuhmann F, Kattnig DR, Solov'yov IA. Exploring Post-activation Conformational Changes in Pigeon Cryptochrome 4. J Phys Chem B 2021; 125:9652-9659. [PMID: 34327996 DOI: 10.1021/acs.jpcb.1c02795] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A widespread hypothesis ascribes the ability of migratory birds to navigate over large distances to an inclination compass realized by the protein cryptochrome in the birds' retinae. Cryptochromes are activated by blue light, which induces a radical pair state, the spin dynamics of which may become sensitive to earth's weak magnetic fields. The magnetic information is encoded and passed on to downstream processes by structural rearrangements of the protein, the details of which remain vague. We utilize extensive all-atom molecular dynamics simulations to probe the conformational changes of pigeon cryptochrome 4 upon light activation. The structural dynamics are analyzed based on principal component analysis and with the help of distance matrices, which reveal significant changes in selected inter-residue distances. The results are evaluated and discussed with reference to the protein structure and its putative function as a magnetoreceptor. It is suggested that the phosphate-binding loop could act as a gate controlling the access to the flavin adenine dinucleotide cofactor depending on the redox state of the protein.
Collapse
Affiliation(s)
- Fabian Schuhmann
- Department of Physics, Carl von Ossietzky Universät Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26129, Germany
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Rd., Exeter EX4 4QD, U.K
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky Universät Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26129, Germany
| |
Collapse
|
6
|
Wang Y, Veglia G, Zhong D, Gao J. Activation mechanism of Drosophila cryptochrome through an allosteric switch. SCIENCE ADVANCES 2021; 7:7/25/eabg3815. [PMID: 34144991 PMCID: PMC8213227 DOI: 10.1126/sciadv.abg3815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Cryptochromes are signaling proteins activated by photoexcitation of the flavin adenine dinucleotide (FAD) cofactor. Although extensive research has been performed, the mechanism for this allosteric process is still unknown. We constructed three computational models, corresponding to different redox states of the FAD cofactor in Drosophila cryptochrome (dCRY). Analyses of the dynamics trajectories reveal that the activation process occurs in the semiquinone state FAD-●, resulting from excited-state electron transfer. The Arg381-Asp410 salt bridge acts as an allosteric switch, regulated by the change in the redox state of FAD. In turn, Asp410 forms new hydrogen bonds, connecting allosteric networks of the amino-terminal and carboxyl-terminal domains initially separated in the resting state. The expansion to a global dynamic network leads to enhanced protein fluctuations, an increase in the radius of gyration, and the expulsion of the carboxyl-terminal tail. These structural features are in accord with mutations and spectroscopic experiments.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Gianluigi Veglia
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dongping Zhong
- Departments of Physics and Chemistry, The Ohio State University, Columbus, OH 43210, USA.
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Beijing University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
7
|
Karki N, Vergish S, Zoltowski BD. Cryptochromes: Photochemical and structural insight into magnetoreception. Protein Sci 2021; 30:1521-1534. [PMID: 33993574 DOI: 10.1002/pro.4124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
Cryptochromes (CRYs) function as blue light photoreceptors in diverse physiological processes in nearly all kingdoms of life. Over the past several decades, they have emerged as the most likely candidates for light-dependent magnetoreception in animals, however, a long history of conflicts between in vitro photochemistry and in vivo behavioral data complicate validation of CRYs as a magnetosensor. In this review, we highlight the origins of conflicts regarding CRY photochemistry and signal transduction, and identify recent data that provides clarity on potential mechanisms of signal transduction in magnetoreception. The review primarily focuses on examining differences in photochemistry and signal transduction in plant and animal CRYs, and identifies potential modes of convergent evolution within these independent lineages that may identify conserved signaling pathways.
Collapse
Affiliation(s)
- Nischal Karki
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Satyam Vergish
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Brian D Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|