1
|
Dadafarin H, Konkov E, Vali H, Ali I, Omanovic S. Modification of 316L Stainless Steel, Nickel Titanium, and Cobalt Chromium Surfaces by Irreversible Immobilization of Fibronectin: Towards Improving the Coronary Stent Biocompatibility. Molecules 2024; 29:4927. [PMID: 39459295 PMCID: PMC11510294 DOI: 10.3390/molecules29204927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
An extracellular matrix protein, fibronectin (Fn), was covalently immobilized on 316L stainless steel, L605 cobalt chromium (CoCr), and nickel titanium (NiTi) surfaces through an 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM) pre-formed on these surfaces. Polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS) confirmed the presence of Fn on the surfaces. The Fn monolayer attached to the SAM was found to be stable under fluid shear stress. Deconvolution of the Fn amide I band indicated that the secondary structure of Fn changes significantly upon immobilization to the SAM-functionalized metal substrate. Scanning electron microscopy and energy dispersive X-ray analysis revealed that the spacing between Fn molecules on a modified commercial stent surface is approximately 66 nm, which has been reported to be the most appropriate spacing for cell/surface interactions.
Collapse
Affiliation(s)
- Hesam Dadafarin
- Department of Chemical Engineering, McGill University, 3610 University St., Montreal, QC H3A 0C5, Canada; (H.D.); (E.K.)
| | - Evgeny Konkov
- Department of Chemical Engineering, McGill University, 3610 University St., Montreal, QC H3A 0C5, Canada; (H.D.); (E.K.)
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, 3640 University St., Montreal, QC H3A 0C7, Canada;
| | - Irshad Ali
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering & Technology, Jamrud Road, Peshawar 25000, Pakistan;
| | - Sasha Omanovic
- Department of Chemical Engineering, McGill University, 3610 University St., Montreal, QC H3A 0C5, Canada; (H.D.); (E.K.)
| |
Collapse
|
2
|
Pijning T, Vujičić‐Žagar A, van der Laan J, de Jong RM, Ramirez‐Palacios C, Vente A, Edens L, Dijkstra BW. Structural and time-resolved mechanistic investigations of protein hydrolysis by the acidic proline-specific endoprotease from Aspergillus niger. Protein Sci 2024; 33:e4856. [PMID: 38059672 PMCID: PMC10731622 DOI: 10.1002/pro.4856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Proline-specific endoproteases have been successfully used in, for example, the in-situ degradation of gluten, the hydrolysis of bitter peptides, the reduction of haze during beer production, and the generation of peptides for mass spectroscopy and proteomics applications. Here we present the crystal structure of the extracellular proline-specific endoprotease from Aspergillus niger (AnPEP), a member of the S28 peptidase family with rarely observed true proline-specific endoprotease activity. Family S28 proteases have a conventional Ser-Asp-His catalytic triad, but their oxyanion-stabilizing hole shows a glutamic acid, an amino acid not previously observed in this role. Since these enzymes have an acidic pH optimum, the presence of a glutamic acid in the oxyanion hole may confine their activity to an acidic pH. Yet, considering the presence of the conventional catalytic triad, it is remarkable that the A. niger enzyme remains active down to pH 1.5. The determination of the primary cleavage site of cytochrome c along with molecular dynamics-assisted docking studies indicate that the active site pocket of AnPEP can accommodate a reverse turn of approximately 12 amino acids with proline at the S1 specificity pocket. Comparison with the structures of two S28-proline-specific exopeptidases reveals not only a more spacious active site cavity but also the absence of any putative binding sites for amino- and carboxyl-terminal residues as observed in the exopeptidases, explaining AnPEP's observed endoprotease activity.
Collapse
Affiliation(s)
- Tjaard Pijning
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | - Andreja Vujičić‐Žagar
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | | | | | | | - Andre Vente
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Luppo Edens
- Taste, Texture and HealthDSM‐FirmenichDelftThe Netherlands
| | - Bauke W. Dijkstra
- Biomolecular X‐ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| |
Collapse
|
3
|
Calvelo M, Males A, Alteen MG, Willems LI, Vocadlo DJ, Davies GJ, Rovira C. Human O-GlcNAcase Uses a Preactivated Boat-skew Substrate Conformation for Catalysis. Evidence from X-ray Crystallography and QM/MM Metadynamics. ACS Catal 2023; 13:13672-13678. [PMID: 37969138 PMCID: PMC10636738 DOI: 10.1021/acscatal.3c02378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/07/2023] [Indexed: 11/17/2023]
Abstract
Human O-linked β-N-acetylglucosaminidase (hOGA) is one of the two enzymes involved in nuclear and cytoplasmic protein O-GlcNAcylation, an essential post-translational modification. The enzyme catalyzes the hydrolysis of the GlcNAc-O-(Ser/Thr) glycosidic bonds via anchimeric assistance through the 2-acetamido group of the GlcNAc sugar. However, the conformational itinerary of the GlcNAc ring during catalysis remains unclear. Here we report the crystal structure of wild type hOGA in complex with a nonhydrolyzable glycopeptide substrate and elucidate the full enzyme catalytic mechanism using QM/MM metadynamics. We show that the enzyme can bind the substrate in either a chair- or a boat-like conformation, but only the latter is catalytically competent, leading to the reaction products via 1,4B/1S3 → [4E]‡ → 4C1 and 4C1 → [4E]‡ → 1,4B/1S3 conformational itineraries for the first and second catalytic reaction steps, respectively. Our results reconcile previous experimental observations for human and bacterial OGA and will aid the development of more effective OGA inhibitors for diseases associated with impaired O-GlcNAcylation.
Collapse
Affiliation(s)
- Martín Calvelo
- Departament
de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Alexandra Males
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, United Kingdom
| | - Matthew G. Alteen
- Department
of Chemistry & Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lianne I. Willems
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, United Kingdom
| | - David J. Vocadlo
- Department
of Chemistry & Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, United Kingdom
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08020 Barcelona, Spain
| |
Collapse
|
4
|
Buslaev P, Aho N, Jansen A, Bauer P, Hess B, Groenhof G. Best Practices in Constant pH MD Simulations: Accuracy and Sampling. J Chem Theory Comput 2022; 18:6134-6147. [PMID: 36107791 PMCID: PMC9558372 DOI: 10.1021/acs.jctc.2c00517] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
Various approaches
have been proposed to include the
effect of
pH in molecular dynamics (MD) simulations. Among these, the λ-dynamics approach proposed
by Brooks and
co-workers [Kong, X.; Brooks III, C. L. J. Chem. Phys.1996, 105, 2414−2423] can be performed
with little computational overhead and hfor each typeence be used
to routinely perform MD simulations at microsecond time scales, as
shown in the accompanying paper [Aho, N. et al. J. Chem. Theory
Comput.2022, DOI: 10.1021/acs.jctc.2c00516]. At
such time scales, however, the accuracy of the molecular mechanics
force field and the parametrization becomes critical. Here, we address
these issues and provide the community with guidelines on how to set
up and perform long time scale constant pH MD simulations. We found
that barriers associated with the torsions of side chains in the CHARMM36m
force field are too high for reaching convergence in constant pH MD
simulations on microsecond time scales. To avoid the high computational
cost of extending the sampling, we propose small modifications to
the force field to selectively reduce the torsional barriers. We demonstrate
that with such modifications we obtain converged distributions of
both protonation and torsional degrees of freedom and hence consistent
pKa estimates, while the sampling of the
overall configurational space accessible to proteins is unaffected
as compared to normal MD simulations. We also show that the results
of constant pH MD depend on the accuracy of the correction potentials.
While these potentials are typically obtained by fitting a low-order
polynomial to calculated free energy profiles, we find that higher
order fits are essential to provide accurate and consistent results.
By resolving problems in accuracy and sampling, the work described
in this and the accompanying paper paves the way to the widespread
application of constant pH MD beyond pKa prediction.
Collapse
Affiliation(s)
- Pavel Buslaev
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Noora Aho
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Anton Jansen
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Paul Bauer
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Berk Hess
- Department of Applied Physics and Swedish e-Science Research Center, Science for Life Laboratory, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
5
|
Long F, Xie H, Zhuang W. Identification of Trans- and Cis-2-Methylcyclopropanecarboxylic acid using EVV 2DIR spectroscopy: A theoretical study. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Alabugin IV, Kuhn L, Medvedev MG, Krivoshchapov NV, Vil' VA, Yaremenko IA, Mehaffy P, Yarie M, Terent'ev AO, Zolfigol MA. Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chem Soc Rev 2021; 50:10253-10345. [PMID: 34263287 DOI: 10.1039/d1cs00386k] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although carbon is the central element of organic chemistry, oxygen is the central element of stereoelectronic control in organic chemistry. Generally, a molecule with a C-O bond has both a strong donor (a lone pair) and a strong acceptor (e.g., a σ*C-O orbital), a combination that provides opportunities to influence chemical transformations at both ends of the electron demand spectrum. Oxygen is a stereoelectronic chameleon that adapts to the varying situations in radical, cationic, anionic, and metal-mediated transformations. Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), i.e., the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed to hyperconjugative interactions of σ-acceptors with a lone pair at oxygen (negative hyperconjugation), recent literature reports suggested alternative explanations. In this context, it is timely to evaluate the fundamental connections between the AE and a broad variety of O-functional groups. Such connections illustrate the general role of hyperconjugation with oxygen lone pairs in reactivity. Lessons from the AE can be used as the conceptual framework for organizing disjointed observations into a logical body of knowledge. In contrast, neglect of hyperconjugation can be deeply misleading as it removes the stereoelectronic cornerstone on which, as we show in this review, the chemistry of organic oxygen functionalities is largely based. As negative hyperconjugation releases the "underutilized" stereoelectronic power of unshared electrons (the lone pairs) for the stabilization of a developing positive charge, the role of orbital interactions increases when the electronic demand is high and molecules distort from their equilibrium geometries. From this perspective, hyperconjugative anomeric interactions play a unique role in guiding reaction design. In this manuscript, we discuss the reactivity of organic O-functionalities, outline variations in the possible hyperconjugative patterns, and showcase the vast implications of AE for the structure and reactivity. On our journey through a variety of O-containing organic functional groups, from textbook to exotic, we will illustrate how this knowledge can predict chemical reactivity and unlock new useful synthetic transformations.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Patricia Mehaffy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| |
Collapse
|