1
|
Yoo IT, Jeong J, Eun HJ, Yun J, Heo J, Kim NJ. Conformation-Selective Ultraviolet-Ultraviolet Hole Burning Spectra of Ubiquitin Ions in a Cryogenic Ion Trap. J Phys Chem Lett 2024; 15:7398-7402. [PMID: 38995855 DOI: 10.1021/acs.jpclett.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Understanding the structural variations of conformational isomers in proteins is crucial for elucidating protein folding mechanisms. Here, we present a novel method for obtaining conformation-selective ultraviolet (UV)-UV hole burning (HB) spectra of ubiquitin ions ((Ubi+zH)+z, z = 7-10) produced via electrospray ionization. Our approach involves binding multiple N2 molecules to ubiquitin ions ((Ubi+zH)+z(N2)m, m = 1-55) within a cryogenic ion trap. Upon exposure to UV irradiation, efficient fragmentation of (Ubi+zH)+z(N2)m occurs, primarily yielding bare (Ubi+zH)+z ions as fragments. The significant mass difference between the parent and fragment ions facilitates the acquisition of UV-UV HB spectra, which reveal the presence of at least two distinct conformers. Molecular dynamics simulations suggest that these conformers correspond to A-state structures, differing only in the interactions of a tyrosine residue with neighboring residues. Our findings underscore UV-UV HB spectroscopy of protein ions as a powerful tool for exploring diverse protein isomers.
Collapse
Affiliation(s)
- Il Tae Yoo
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| | - Jinho Jeong
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| | - Han Jun Eun
- Gas Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Jiyeon Yun
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| | - Jiyoung Heo
- Department of Green Chemical Engineering, Sangmyung University, Chungnam 31066, Korea
| | - Nam Joon Kim
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea
| |
Collapse
|
2
|
Jacinto-Méndez D, Granados-Ramírez CG, Carbajal-Tinoco MD. KCD: A prediction web server of knowledge-based circular dichroism. Protein Sci 2024; 33:e4967. [PMID: 38532692 DOI: 10.1002/pro.4967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
We present a web server that predicts the far-UV circular dichroism (CD) spectra of proteins by utilizing their three-dimensional (3D) structures from the Protein Data Bank (PDB). The main algorithm is based on the classical theory of optical activity together with a set of atomic complex polarizabilities, which are obtained from the analysis of a series of synchrotron radiation CD spectra and their related 3D structures from the PDB. The results of our knowledge-based CD method (KCD) are in good agreement with measured spectra that could include the effect of D-amino acids. Our method also delivers some of the most accurate predictions, in comparison with the calculated spectra from well-established models. Specifically, using a metric of closeness based on normalized absolute deviations between experimental and calculated spectra, the mean values for a series of 57 test proteins give the following figures for such models: 0.26 KCD, 0.27 PDBMD2CD, 0.30 SESCA, and 0.47 DichroCalc. From another point of view, it is worth mentioning the remarkable capabilities of the recent approaches based on artificial intelligence, which can precisely predict the native structure of proteins. The structure of proteins, however, is flexible and can be modified by a diversity of environmental factors such as interactions with other molecules, mechanical stresses, variations of temperature, pH, or ionic strength. Experimental CD spectra together with reliable predictions can be utilized to assess eventual secondary structural changes. A similar kind of evaluation can be done for the case of an incomplete protein structure that has been reconstructed by using different approaches. The KCD method can be freely accessed from: https://kcd.cinvestav.mx/.
Collapse
Affiliation(s)
- Damián Jacinto-Méndez
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | | | | |
Collapse
|
3
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
4
|
Dupont J, Lepère V, Zehnacker A, Hartweg S, Garcia GA, Nahon L. Photoelectron Circular Dichroism as a Signature of Subtle Conformational Changes: The Case of Ring Inversion in 1-Indanol. J Phys Chem Lett 2022; 13:2313-2320. [PMID: 35245057 DOI: 10.1021/acs.jpclett.2c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chirality plays a fundamental role in the molecular recognition processes. Molecular flexibility is also crucial in molecular recognition, allowing the interacting molecules to adjust their structures and hence optimize the interaction. Methods probing simultaneously chirality and molecular conformation are therefore crucially needed. Taking advantage of a possible control in the gas phase of the conformational distribution between the equatorial and axial conformers resulting from a ring inversion in jet-cooled 1-indanol, we demonstrate here the sensitivity of valence-shell photoelectron circular dichroism (PECD) to both chirality and subtle conformational changes, in a case where the photoelectron spectra of the two conformers are identical. For the highest occupied orbital, we observe a dramatic inversion of the PECD-induced photoelectron asymmetries, while the photoionization cross-section and usual anisotropy (β) parameter are completely insensitive to conformational isomerism. Such a sensitivity is a major asset for the ongoing developments of PECD-based techniques as a sensitive chiral (bio)chemical analytical tool in the gas phase.
Collapse
Affiliation(s)
- Jennifer Dupont
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Valéria Lepère
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Sebastian Hartweg
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| | - Gustavo A Garcia
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| | - Laurent Nahon
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| |
Collapse
|
5
|
Hirata K, Haddad F, Dopfer O, Ishiuchi SI, Fujii M. Collision-assisted stripping for determination of microsolvation-dependent protonation sites in hydrated clusters by cryogenic ion trap infrared spectroscopy: the case of benzocaineH +(H 2O) n. Phys Chem Chem Phys 2022; 24:5774-5779. [PMID: 35199812 DOI: 10.1039/d1cp05762f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The protonation site of molecules can be varied by their surrounding environment. Gas-phase studies, including the popular techniques of infrared spectroscopy and ion mobility spectrometry, are a powerful tool for the determination of protonation sites in solvated clusters but often suffer from inherent limits for larger hydrated clusters. Here, we present collision-assisted stripping infrared (CAS-IR) spectroscopy as a new technique to overcome these problems and apply it in a proof-of-principle experiment to hydrated clusters of protonated benzocaine (H+BC), which shows protonation-site switching depending on the degree of hydration. The most stable protomer of H+BC in the gas phase (O-protonated) is interconverted into its most stable protomer in aqueous solution (N-protonated) upon hydration with three water molecules. CAS-IR spectroscopy enables us to unambiguously assign protonation sites and quantitatively determine the relative abundance of various protomers.
Collapse
Affiliation(s)
- Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, 4259, Yokohama, 226-8503, Japan.
| | - Fuad Haddad
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, Berlin 10623, Germany
| | - Otto Dopfer
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, 4259, Yokohama, 226-8503, Japan. .,Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, Berlin 10623, Germany
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, 4259, Yokohama, 226-8503, Japan.
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, 4259, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| |
Collapse
|
6
|
Marlton SJP, Trevitt A. Laser Photodissocation, Action Spectroscopy and Mass Spectrometry Unite to Detect and Separate Isomers. Chem Commun (Camb) 2022; 58:9451-9467. [DOI: 10.1039/d2cc02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and detection of isomers remains a challenge for many areas of mass spectrometry. This article highlights laser photodissociation and ion mobility strategies that have been deployed to tackle...
Collapse
|
7
|
Granados-Ramírez CG, Carbajal-Tinoco MD. Knowledge-Based Atomic Polarizabilities Used to Model Circular Dichroism Spectra of Proteins. J Phys Chem B 2021; 126:80-92. [PMID: 34971307 DOI: 10.1021/acs.jpcb.1c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a model of circular dichroism for proteins, which is mainly based on both the classical theory of optical activity and a series of effective atomic polarizabilities. Such polarizabilities are extracted from the analysis of a set of synchrotron radiation circular dichroism spectra and their corresponding three-dimensional structures from the Protein Data Bank. Each modeled spectrum is obtained from the protein atomic coordinates and the identification of its secondary structure elements. The resulting spectra are in good agreement with additional experimental data and also with the predictions of some other models. Among them, only our approach is able to describe the effect of d-amino acids. Moreover, our model is also utilized to evaluate protein reconstructions as well as structural changes.
Collapse
Affiliation(s)
- Carmen Giovana Granados-Ramírez
- Facultad de Ciencias y Educación PCLQ, Universidad Distrital Francisco José de Caldas, Car. 3 No. 26A - 40, C.P. 110311 Bogotá D.C., Colombia
| | - Mauricio D Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, C.P. 07360 Cd. de México, Mexico
| |
Collapse
|
8
|
Takeda N, Hirata K, Tsuruta K, Santis GD, Xantheas SS, Ishiuchi SI, Fujii M. Gas phase protonated nicotine is a mixture of pyridine- and pyrrolidine-protonated conformers: implications for its native structure in the nicotinic acetylcholine receptor. Phys Chem Chem Phys 2021; 24:5786-5793. [PMID: 34939632 DOI: 10.1039/d1cp05175j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The infrared (IR) spectra of gas phase protonated nicotine has been measured in the never-before probed N-H "fingerprint region" (3200-3500 cm-1). The protonated molecules generated by an electrospray source are thermalized in the first ion trap with water vapor and He gas at a pre-determined temperature prior to being probed by IR spectroscopy in the second ion trap at 4 K. The IR spectra exhibit two N-H stretching bands which are assigned to the pyridine and pyrrolidine protomers with the aid of high-level electronic structure calculations. This finding is in sharp contrast to previous spectroscopic studies that suggested a single population of the pyridine protomer. The relative populations of the two protomers vary by changing the temperature of the thermalizing trap from 180-300 K. The relative conformer populations at 240 K and 300 K are well reproduced by the theoretical calculations, unequivocally determining that gas phase nicotine is a 3 : 2 mixture of both pyridine and pyrrolidine protomers at room temperature. The thermalizing anhydrous vapor does not result in any population change. It rather demonstrates the catalytic role of water in achieving equilibrium between the two protomers. The combination of IR spectroscopy and electronic structure calculations establish the small energy difference between the pyridine and pyrrolidine protomers in nicotine. One of the gas phase nicotine pyrrolidine protomers has the closest conformational resemblance among all low-lying energy isomers with the X-ray structure of nicotine in the nicotinic acetylcholine receptor (nAChR).
Collapse
Affiliation(s)
- Naoya Takeda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 4259 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Kazuya Tsuruta
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Garrett D Santis
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Sotiris S Xantheas
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, University of Washington, Seattle, WA 98195, USA.,Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352, USA
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 4259 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
9
|
Yoo IT, Eun HJ, Min A, Jeon CW, Jeong J, Heo J, Kim NJ. Ultraviolet photodissociation circular dichroism spectroscopy of protonated L-phenylalanyl-L-alanine in a cryogenic ion trap. Phys Chem Chem Phys 2021; 23:24180-24186. [PMID: 34676382 DOI: 10.1039/d1cp04030h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We obtained ultraviolet photodissociation (UVPD) circular dichroism (CD) spectra of protonated L-phenylalanyl-L-alanine (L-H+PheAla) near the origin band of the S0-S1 transition using cryogenic ion spectroscopy. Infrared (IR) ion-dip, IR-UV hole burning (HB) and UV-UV HB spectra showed that L-H+PheAla existed as two different conformers in a cryogenic ion trap, and they had nearly identical peptide backbones but different conformations in the Phe side chain. The UVPD CD spectra revealed that the two conformers had opposite CD signs and significantly different CD magnitudes from each other. These results demonstrate that the CD value of L-H+PheAla near the origin band is strongly influenced by the conformation of the Phe side chain.
Collapse
Affiliation(s)
- Il Tae Yoo
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea.
| | - Han Jun Eun
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea.
| | - Ahreum Min
- Department of Chemistry (BK21 +) and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Chang Wook Jeon
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea.
| | - Jinho Jeong
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea.
| | - Jiyoung Heo
- Department of Green Chemical Engineering, Sangmyung University, Chungnam 31066, Korea
| | - Nam Joon Kim
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Korea.
| |
Collapse
|
10
|
Dou Y, Li W, Xia Y, Chen Z, Wu Z, Ge Y, Lin Z, Zhang M, Yang K, Yuan B, Kang Z. Photo-Voltage Transients for Real-Time Analysis of the Interactions between Molecules and Membranes. ACS APPLIED BIO MATERIALS 2020. [DOI: 10.1021/acsabm.0c01180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yujiang Dou
- College of Electronics and Information, Soochow University, Suzhou 215006, Jiangsu, China
- Suzhou Weimu Intelligent System Co. Ltd., Suzhou 215163, Jiangsu, China
| | - Wenwen Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yu Xia
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhonglan Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhenyu Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yuke Ge
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhao Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Mengling Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
- Institute of Advanced Materials, Northeast Normal University, 5268 Renmin Street, Changchun 130024, Jilin, China
| |
Collapse
|
11
|
Granados-Ramírez CG, Carbajal-Tinoco MD. Secondary structure specified polarizabilities of residues for an evaluation of circular dichroism spectra of proteins. J Chem Phys 2020; 153:155101. [DOI: 10.1063/5.0023360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Carmen Giovana Granados-Ramírez
- Facultad de Ciencias y Educación PCLQ, Universidad Distrital Francisco José de Caldas, Car. 3 No. 26A-40, C.P. 110311 Bogotá D.C., Colombia
| | - Mauricio D. Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN No. 2508, Col. San Pedro Zacatenco, C.P. 07360 Cd. de México, Mexico
| |
Collapse
|