1
|
Thorley KJ, Nielsen CB. Conformational Analysis of Conjugated Organic Materials: What Are My Heteroatoms Really Doing? Chempluschem 2024; 89:e202300773. [PMID: 38598306 DOI: 10.1002/cplu.202300773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Indexed: 04/12/2024]
Abstract
Organic semiconductor small molecules and polymers often incorporate heteroatoms into their chemical structures to affect the electronic properties of the material. A particular design philosophy has been to use these heteroatoms to influence torsional potentials, since the overlap of adjacent π-orbitals is most efficient in planar systems and is critical for charge delocalization in these systems. Since these design rules became popular, the messages from the earlier works have become lost in a sea of reports of "conformational locks", where the non-covalent interactions have relatively small contributions to planarizing torsional potentials. Greater influences can be found in the stabilization by extended conjugation, consideration of steric repulsion, and the interactions involving solubilizing chains and neighboring molecules or polymer chains in condensed phases.
Collapse
Affiliation(s)
- Karl J Thorley
- Center for Applied Energy Research, University of Kentucky, Lexington, KY 40511, USA
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
2
|
Cao X, Li H, Hu J, Tian H, Han Y, Meng B, Liu J, Wang L. An Amorphous n-Type Conjugated Polymer with an Ultra-Rigid Planar Backbone. Angew Chem Int Ed Engl 2023; 62:e202212979. [PMID: 36345132 DOI: 10.1002/anie.202212979] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 11/10/2022]
Abstract
High charge carrier mobility polymer semiconductors are always semi-crystalline. Amorphous conjugated polymers represent another kind of polymer semiconductors with different charge transporting mechanism. Here we report the first near-amorphous n-type conjugated polymer with decent electron mobility, which features a remarkably rigid, straight and planar polymer backbone. The molecular design strategy is to copolymerize two fused-ring building blocks which are both electron-accepting, centrosymmetrical and planar. The polymer is the alternating copolymer of double B←N bridged bipyridine (BNBP) unit and benzobisthiazole (BBTz) unit. It shows a decent electron mobility of 0.34 cm2 V-1 s-1 in organic field-effect transistors. The excellent electron transporting property of the polymer is possibly due to the ultrahigh backbone stiffness, small π-π stacking distance, and high molecular weight.
Collapse
Affiliation(s)
- Xu Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, 130024, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
3
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
4
|
Danielsen SPO, Bridges CR, Segalman RA. Chain Stiffness of Donor–Acceptor Conjugated Polymers in Solution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott P. O. Danielsen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Colin R. Bridges
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Mitsubishi Chemical Center for Advanced Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Hou K, Chen S, Zhou C, Nguyen LL, Dananjaya PA, Duchamp M, Bazan GC, Lew WS, Leong WL. Operando Direct Observation of Filament Formation in Resistive Switching Devices Enabled by a Topological Transformation Molecule. NANO LETTERS 2021; 21:9262-9269. [PMID: 34719932 DOI: 10.1021/acs.nanolett.1c03180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conductive filaments (CFs) play a critical role in the mechanism of resistive random-access memory (ReRAM) devices. However, in situ detection and visualization of the precise location of CFs are still key challenges. We demonstrate for the first time the use of a π-conjugated molecule which can transform between its twisted and planar states upon localized Joule heating generated within filament regions, thus reflecting the locations of the underlying CFs. Customized patterns of CFs were induced and observed by the π-conjugated molecule layer, which confirmed the hypothesis. Additionally, statistical studies on filaments distribution were conducted to study the effect of device sizes and bottom electrode heights, which serves to enhance the understanding of switching behavior and their variability at device level. Therefore, this approach has great potential in aiding the development of ReRAM technology.
Collapse
Affiliation(s)
- Kunqi Hou
- School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link, 637371 Singapore
| | - Shuai Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University 50 Nanyang Avenue, 639798 Singapore
| | - Cheng Zhou
- Depertment of Chemistry, National University of Singapore 3 Science Drive 3, 117543 Singapore
| | - Linh Lan Nguyen
- School of Materials Science & Engineering, Nanyang Technological University 50 Nanyang Avenue, 639798 Singapore
| | - Putu Andhita Dananjaya
- School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link, 637371 Singapore
| | - Martial Duchamp
- School of Materials Science & Engineering, Nanyang Technological University 50 Nanyang Avenue, 639798 Singapore
| | - Guillermo C Bazan
- Depertment of Chemistry, National University of Singapore 3 Science Drive 3, 117543 Singapore
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link, 637371 Singapore
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|