1
|
Steinberg Y, Sebti E, Moroz IB, Zohar A, Jardón-Álvarez D, Bendikov T, Maity A, Carmieli R, Clément RJ, Leskes M. Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear Polarization─NMR Spectroscopy. J Am Chem Soc 2024; 146:24476-24492. [PMID: 39169891 PMCID: PMC11378293 DOI: 10.1021/jacs.4c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode-electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.
Collapse
Affiliation(s)
- Yuval Steinberg
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Elias Sebti
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Ilia B Moroz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Arava Zohar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Daniel Jardón-Álvarez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ayan Maity
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Raphaële J Clément
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| |
Collapse
|
2
|
Yan T, Hou H, Wu C, Cai Y, Yin A, Cao Z, Liu Z, He P, Xu J. Unraveling the molecular mechanism for enhanced gas adsorption in mixed-metal MOFs via solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2024; 121:e2312959121. [PMID: 38300865 PMCID: PMC10861867 DOI: 10.1073/pnas.2312959121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024] Open
Abstract
The incorporation of multiple metal ions in metal-organic frameworks (MOFs) through one-pot synthesis can induce unique properties originating from specific atomic-scale spatial apportionment, but the extraction of this crucial information poses challenges. Herein, nondestructive solid-state NMR spectroscopy was used to discern the atomic-scale metal apportionment in a series of bulk Mg1-xCox-MOF-74 samples via identification and quantification of eight distinct arrangements of Mg/Co ions labeled with a 13C-carboxylate, relative to Co content. Due to the structural characteristics of metal-oxygen chains, the number of metal permutations is infinite for Mg1-xCox-MOF-74, making the resolution of atomic-scale metal apportionment particularly challenging. The results were then employed in density functional theory calculations to unravel the molecular mechanism underlying the macroscopic adsorption properties of several industrially significant gases. It is found that the incorporation of weak adsorption sites (Mg2+ for CO and Co2+ for CO2 adsorption) into the MOF structure counterintuitively boosts the gas adsorption energy on strong sites (Co2+ for CO and Mg2+ for CO2 adsorption). Such effect is significant even for Co2+ remote from Mg2+ in the metal-oxygen chain, resulting in a greater enhancement of CO adsorption across a broad composition range, while the enhancement of CO2 adsorption is restricted to Mg2+ with adjacent Co2+. Dynamic breakthrough measurements unambiguously verified the trend in gas adsorption as a function of metal composition. This research thus illuminates the interplay between atomic-scale structures and macroscopic gas adsorption properties in mixed-metal MOFs and derived materials, paving the way for developing superior functional materials.
Collapse
Affiliation(s)
- Tao Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin300350, People’s Republic of China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, People’s Republic of China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Huaming Hou
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
| | - Changzong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin300350, People’s Republic of China
| | - Yuhang Cai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, People’s Republic of China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Anping Yin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, People’s Republic of China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Zhi Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, People’s Republic of China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Zhong Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai810008, People’s Republic of China
| | - Peng He
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, People’s Republic of China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin300350, People’s Republic of China
| |
Collapse
|
3
|
Moroz IB, Feldman Y, Carmieli R, Liu X, Leskes M. Endogenous metal-ion dynamic nuclear polarization for NMR signal enhancement in metal organic frameworks. Chem Sci 2023; 15:336-348. [PMID: 38131097 PMCID: PMC10731914 DOI: 10.1039/d3sc03456a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Rational design of metal-organic framework (MOF)-based materials for catalysis, gas capture and storage, requires deep understanding of the host-guest interactions between the MOF and the adsorbed molecules. Solid-State NMR spectroscopy is an established tool for obtaining such structural information, however its low sensitivity limits its application. This limitation can be overcome with dynamic nuclear polarization (DNP) which is based on polarization transfer from unpaired electrons to the nuclei of interest and, as a result, enhancement of the NMR signal. Typically, DNP is achieved by impregnating or wetting the MOF material with a solution of nitroxide biradicals, which prevents or interferes with the study of host-guest interactions. Here we demonstrate how Gd(iii) ions doped into the MOF structure, LaBTB (BTB = 4,4',4''-benzene-1,3,5-triyl-trisbenzoate), can be employed as an efficient polarization agent, yielding up to 30-fold 13C signal enhancement for the MOF linkers, while leaving the pores empty for potential guests. Furthermore, we demonstrate that ethylene glycol, loaded into the MOF as a guest, can also be polarized using our approach. We identify specific challenges in DNP studies of MOFs, associated with residual oxygen trapped within the MOF pores and the dynamics of the framework and its guests, even at cryogenic temperatures. To address these, we describe optimal conditions for carrying out and maximizing the enhancement achieved in DNP-NMR experiments. The approach presented here can be expanded to other porous materials which are currently the state-of-the-art in energy and sustainability research.
Collapse
Affiliation(s)
- Ilia B Moroz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 76100 Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 76100 Israel
| | - Xinyu Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
4
|
Mishra A, Hope MA, Stevanato G, Kubicki DJ, Emsley L. Dynamic Nuclear Polarization of Inorganic Halide Perovskites. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11094-11102. [PMID: 37342202 PMCID: PMC10278140 DOI: 10.1021/acs.jpcc.3c01527] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2023] [Indexed: 06/22/2023]
Abstract
The intrinsic low sensitivity of nuclear magnetic resonance (NMR) experiments limits their utility for structure determination of materials. Dynamic nuclear polarization (DNP) under magic angle spinning (MAS) has shown tremendous potential to overcome this key limitation, enabling the acquisition of highly selective and sensitive NMR spectra. However, so far, DNP methods have not been explored in the context of inorganic lead halide perovskites, which are a leading class of semiconductor materials for optoelectronic applications. In this work, we study cesium lead chloride and quantitatively compare DNP methods based on impregnation with a solution of organic biradicals with doping of high-spin metal ions (Mn2+) into the perovskite structure. We find that metal-ion DNP provides the highest bulk sensitivity in this case, while highly surface-selective NMR spectra can be acquired using impregnation DNP. The performance of both methods is explained in terms of the relaxation times, particle size, dopant concentration, and surface wettability. We envisage the future use of DNP NMR approaches in establishing structure-activity relationships in inorganic perovskites, especially for mass-limited samples such as thin films.
Collapse
|
5
|
Menzildjian G, Schlagnitweit J, Casano G, Ouari O, Gajan D, Lesage A. Polarizing agents for efficient high field DNP solid-state NMR spectroscopy under magic-angle spinning: from design principles to formulation strategies. Chem Sci 2023; 14:6120-6148. [PMID: 37325158 PMCID: PMC10266460 DOI: 10.1039/d3sc01079a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Dynamic Nuclear Polarization (DNP) has recently emerged as a cornerstone approach to enhance the sensitivity of solid-state NMR spectroscopy under Magic Angle Spinning (MAS), opening unprecedented analytical opportunities in chemistry and biology. DNP relies on a polarization transfer from unpaired electrons (present in endogenous or exogenous polarizing agents) to nearby nuclei. Developing and designing new polarizing sources for DNP solid-state NMR spectroscopy is currently an extremely active research field per se, that has recently led to significant breakthroughs and key achievements, in particular at high magnetic fields. This review describes recent developments in this area, highlighting key design principles that have been established over time and led to the introduction of increasingly more efficient polarizing sources. After a short introduction, Section 2 presents a brief history of solid-state DNP, highlighting the main polarization transfer schemes. The third section is devoted to the development of dinitroxide radicals, discussing the guidelines that were progressively established to design the fine-tuned molecular structures in use today. In Section 4, we describe recent efforts in developing hybrid radicals composed of a narrow EPR line radical covalently linked to a nitroxide, highlighting the parameters that modulate the DNP efficiency of these mixed structures. Section 5 reviews recent advances in the design of metal complexes suitable for DNP MAS NMR as exogenous electron sources. In parallel, current strategies that exploit metal ions as endogenous polarization sources are discussed. Section 6 briefly describes the recent introduction of mixed-valence radicals. In the last part, experimental aspects regarding sample formulation are reviewed to make best use of these polarizing agents in a broad panel of application fields.
Collapse
Affiliation(s)
- Georges Menzildjian
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Judith Schlagnitweit
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Gilles Casano
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - Olivier Ouari
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire, UMR 7273 Marseille France
| | - David Gajan
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| | - Anne Lesage
- Centre de RMN à, Très Hauts Champs, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1) 5 Rue de la doua 69100 Villeurbanne France
| |
Collapse
|
6
|
Smith ME. Recent progress in solid-state NMR of spin-½ low-γ nuclei applied to inorganic materials. Phys Chem Chem Phys 2022; 25:26-47. [PMID: 36421944 DOI: 10.1039/d2cp03663k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significant technological and methodological advances in solid-state NMR techniques in recent years have increased the accessibility of nuclei with small magnetic moments (hereafter termed low-γ) underpinning an increased range of applications of such nuclei. These methodological advances are briefly summarised, including improvements in hardware and pulse sequences, as well as important developments in associated computational methods (e.g. first principles calculations, spectral simulation). Here spin-½ nuclei are the focus, with this Perspective complementing a very recent review that looked at half-integer spin low-γ quadrupolar nuclei. Reference is made to some of the original reports of such spin-½ nuclei, but recent progress in the relevant methodology and applications to inorganic materials (most within the last 10 years) of these nuclei are the focus. An overview of the current state-of-the-art of studying these nuclei is thereby provided for both NMR spectroscopists and materials researchers.
Collapse
Affiliation(s)
- Mark E Smith
- Vice-Chancellor and President's Office and Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK. .,Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK.,Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
7
|
Wang C, Xu BB, Zhang X, Sun W, Chen J, Pan H, Yan M, Jiang Y. Ion Hopping: Design Principles for Strategies to Improve Ionic Conductivity for Inorganic Solid Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107064. [PMID: 35373539 DOI: 10.1002/smll.202107064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Solid electrolytes are considered as an ideal substitution of liquid electrolytes, avoiding the potential hazards of volatilization, flammability, and explosion for liquid electrolyte-based rechargeable batteries. However, there are significant performance gaps to be bridged between solid electrolytes and liquid electrolytes; one with a particular importance is the ionic conductivity which is highly dependent on the material types and structures. In this review, the general physical image of ion hopping in the crystalline structure is revisited, by highlighting two main kernels that impact ion migration: ion hopping pathways and skeletons interaction. The universal strategies to effectively improve ionic conductivity of inorganic solid electrolytes are then systematically summarized: constructing rapid diffusion pathways for mobile ions; and reducing resistance of the surrounding potential field. The scoped strategies offer an exclusive view on the working principle of ion movement regardless of the ion species, thus providing a comprehensive guidance for the future exploitation of solid electrolytes.
Collapse
Affiliation(s)
- Caiyun Wang
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
| | - Ben Bin Xu
- Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Xuan Zhang
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
| | - Wenping Sun
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Mi Yan
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| |
Collapse
|
8
|
Carnahan SL, Chen Y, Wishart JF, Lubach JW, Rossini AJ. Magic angle spinning dynamic nuclear polarization solid-state NMR spectroscopy of γ-irradiated molecular organic solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 119:101785. [PMID: 35405629 DOI: 10.1016/j.ssnmr.2022.101785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In the past 15 years, magic angle spinning (MAS) dynamic nuclear polarization (DNP) has emerged as a method to increase the sensitivity of high-resolution solid-state NMR spectroscopy experiments. Recently, γ-irradiation has been used to generate significant concentrations of homogeneously distributed free radicals in a variety of solids, including quartz, glucose, and cellulose. Both γ-irradiated quartz and glucose previously showed significant MAS DNP enhancements. Here, γ-irradiation is applied to twelve small organic molecules to test the applicability of γ-irradiation as a general method of creating stable free radicals for MAS DNP experiments on organic solids and pharmaceuticals. Radical concentrations in the range of 0.25 mM-10 mM were observed in irradiated glucose, histidine, malic acid, and malonic acid, and significant 1H DNP enhancements of 32, 130, 19, and 11 were obtained, respectively, as measured by 1H→13C CPMAS experiments. However, concentrations of free radicals below 0.05 mM were generally observed in organic molecules containing aromatic rings, preventing sizeable DNP enhancements. DNP sensitivity gains for several of the irradiated compounds exceed that which can be obtained with the relayed DNP approach that uses exogeneous polarizing agent solutions and impregnation procedures. In several cases, significant 1H DNP enhancements were realized at room temperature. This study demonstrates that in many cases γ-irradiation is a viable alternative to addition of stable exogenous radicals for DNP experiments on organic solids.
Collapse
Affiliation(s)
- Scott L Carnahan
- US DOE Ames Laboratory, Ames, IA, 50011, USA; Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Yunhua Chen
- US DOE Ames Laboratory, Ames, IA, 50011, USA; Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - James F Wishart
- Brookhaven National Laboratory, Chemistry Division, Upton, NY, 11973, United States
| | - Joseph W Lubach
- Genentech Inc., South San Francisco, CA, 94080, United States
| | - Aaron J Rossini
- US DOE Ames Laboratory, Ames, IA, 50011, USA; Iowa State University, Department of Chemistry, Ames, IA, 50011, USA.
| |
Collapse
|
9
|
Jardón-Álvarez D, Malka T, van Tol J, Feldman Y, Carmieli R, Leskes M. Monitoring electron spin fluctuations with paramagnetic relaxation enhancement. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107143. [PMID: 35085928 DOI: 10.1016/j.jmr.2022.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The magnetic interactions between the spin of an unpaired electron and the surrounding nuclear spins can be exploited to gain structural information, to reduce nuclear relaxation times as well as to create nuclear hyperpolarization via dynamic nuclear polarization (DNP). A central aspect that determines how these interactions manifest from the point of view of NMR is the timescale of the fluctuations of the magnetic moment of the electron spins. These fluctuations, however, are elusive, particularly when electron relaxation times are short or interactions among electronic spins are strong. Here we map the fluctuations by analyzing the ratio between longitudinal and transverse nuclear relaxation times T1/T2, a quantity which depends uniquely on the rate of the electron fluctuations and the Larmor frequency of the involved nuclei. This analysis enables rationalizing the evolution of NMR lineshapes, signal quenching as well as DNP enhancements as a function of the concentration of the paramagnetic species and the temperature, demonstrated here for LiMg1-xMnxPO4 and Fe(III) doped Li4Ti5O12, respectively. For the latter, we observe a linear dependence of the DNP enhancement and the electron relaxation time within a temperature range between 100 and 300 K.
Collapse
Affiliation(s)
- Daniel Jardón-Álvarez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tahel Malka
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, FL 32310, United States
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
10
|
Haber S, Leskes M. Dynamic Nuclear Polarization in battery materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 117:101763. [PMID: 34890977 DOI: 10.1016/j.ssnmr.2021.101763] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
The increasing need for portable and large-scale energy storage systems requires development of new, long lasting and highly efficient battery systems. Solid state NMR spectroscopy has emerged as an excellent method for characterizing battery materials. Yet, it is limited when it comes to probing thin interfacial layers which play a central role in the performance and lifetime of battery cells. Here we review how Dynamic Nuclear Polarization (DNP) can lift the sensitivity limitation and enable detection of the electrode-electrolyte interface, as well as the bulk of some electrode and electrolyte systems. We describe the current challenges from the point of view of materials development; considering how the unique electronic, magnetic and chemical properties differentiate battery materials from other applications of DNP in materials science. We review the current applications of exogenous and endogenous DNP from radicals, conduction electrons and paramagnetic metal ions. Finally, we provide our perspective on the opportunities and directions where battery materials can benefit from current DNP methodologies as well as project on future developments that will enable NMR investigation of battery materials with sensitivity and selectivity under ambient conditions.
Collapse
Affiliation(s)
- Shira Haber
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Mentink-Vigier F. Numerical recipes for faster MAS-DNP simulations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107106. [PMID: 34837803 PMCID: PMC8639796 DOI: 10.1016/j.jmr.2021.107106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 05/11/2023]
Abstract
Numerical simulations of Magic Angle Spinning Dynamic Nuclear Polarization (MAS-DNP) have transformed the way the DNP process is understood in rotating samples. In 2012, two methods were concomitantly developed to simulate small spin systems (< 4 spin-1/2). The development of new polarizing agents, including those containing metal centers with S > 1/2, makes it necessary to further expand the numerical tools with minimal approximations that will help rationalize the experimental observations and build approximate models. In this paper, three strategies developed in the past five years are presented: an adaptive integration scheme, a hybrid Hilbert/Liouville formalism, and a method to truncate the Liouville space basis for periodic Hamiltonian. Each of these methods enable time savings ranging from a factor of 3 to > 100. We illustrate the code performance by reporting for the first time the MAS-DNP field profiles for "AMUPol", in which the couplings to the nitrogen nuclei are explicitly considered, as well as Cross-Effect MAS-DNP field profiles with two electrons spin 5/2 interacting with a nuclear spin 1/2.
Collapse
Affiliation(s)
- Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, FL 32310, USA.
| |
Collapse
|