1
|
Hunter HR, Kankati S, Hasanbasri Z, Saxena S. Endogenous Cu(II) Labeling for Distance Measurements on Proteins by EPR. Chemistry 2024; 30:e202403160. [PMID: 39401409 DOI: 10.1002/chem.202403160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
In-cell measurements of the relationship between structure and dynamics to protein function is at the forefront of biophysics. Recently, developments in EPR methodology have demonstrated the sensitivity and power of this method to measure structural constraints in-cell. However, the need to spin label proteins ex-situ or use noncanonical amino acids to achieve endogenous labeling remains a bottleneck. In this work we expand the methodology to endogenously spin label proteins with Cu(II) spin labels and describe how to assess in-cell spin labeling. We quantify the amount of Cu(II)-NTA in cells, assess spin labeling, and account for orientational effects during distance measurements. We compare the efficacy of using heat-shock and hypotonic swelling to deliver spin label, showing that hypotonic swelling is a facile and reproducible method to efficiently deliver Cu(II)-NTA into E. coli. Notably, over six repeats we accomplish a bulk average of 57 μM spin labeled sites, surpassing existing endogenous labeling methods. The results of this work open the door for endogenous spin labeling that is easily accessible to the broader biophysical community.
Collapse
Affiliation(s)
- Hannah R Hunter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shashank Kankati
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
2
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
3
|
Heubach CA, Hasanbasri Z, Abdullin D, Reuter A, Korzekwa B, Saxena S, Schiemann O. Differentiating between Label and Protein Conformers in Pulsed Dipolar EPR Spectroscopy with the dHis-Cu 2+ (NTA) Motif. Chemistry 2023; 29:e202302541. [PMID: 37755452 DOI: 10.1002/chem.202302541] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
Pulsed dipolar EPR spectroscopy (PDS) in combination with site-directed spin labeling is a powerful tool in structural biology. However, the commonly used spin labels are conjugated to biomolecules via rather long and flexible linkers, which hampers the translation of distance distributions into biomolecular conformations. In contrast, the spin label copper(II)-nitrilotriacetic acid [Cu2+ (NTA)] bound to two histidines (dHis) is rigid and yields narrow distance distributions, which can be more easily translated into biomolecular conformations. Here, we use this label on the 71 kDa Yersinia outer protein O (YopO) to decipher whether a previously experimentally observed bimodal distance distribution is due to two conformations of the biomolecule or of the flexible spin labels. Two different PDS experiments, that is, pulsed electron-electron double resonance (PELDOR aka DEER) and relaxation-induced dipolar modulation enhancement (RIDME), yield unimodal distance distribution with the dHis-Cu2+ (NTA) motif; this result suggests that the α-helical backbone of YopO adopts a single conformation in frozen solution. In addition, we show that the Cu2+ (NTA) label preferentially binds to the target double histidine (dHis) sites even in the presence of 22 competing native histidine residues. Our results therefore suggest that the generation of a His-null background is not required for this spin labeling methodology. Together these results highlight the value of the dHis-Cu2+ (NTA) motif in PDS experiments.
Collapse
Affiliation(s)
- Caspar A Heubach
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Zikri Hasanbasri
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Dinar Abdullin
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Arne Reuter
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Benedict Korzekwa
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
- Leibniz-Center for Diabetes Research, University of Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany
| | - Sunil Saxena
- Department of Chemistry, Chevron Science Center, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Olav Schiemann
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| |
Collapse
|
4
|
Mandato A, Hasanbasri Z, Saxena S. Double Quantum Coherence ESR at Q-Band Enhances the Sensitivity of Distance Measurements at Submicromolar Concentrations. J Phys Chem Lett 2023; 14:8909-8915. [PMID: 37768093 PMCID: PMC10577775 DOI: 10.1021/acs.jpclett.3c02372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Recently, there have been remarkable improvements in pulsed ESR sensitivity, paving the way for broader applicability of ESR in the measurement of biological distance constraints, for instance, at physiological concentrations and in more complex systems. Nevertheless, submicromolar distance measurements with the commonly used nitroxide spin label take multiple days. Therefore, there remains a need for rapid and reliable methods of measuring distances between spins at nanomolar concentrations. In this work, we demonstrate the power of double quantum coherence (DQC) experiments at Q-band frequencies. With the help of short and intense pulses, we showcase DQC signals on nitroxide-labeled proteins with modulation depths close to 100%. We show that the deep dipolar modulations aid in the resolution of bimodal distance distributions. Finally, we establish that distance measurements with protein concentrations as low as 25 nM are feasible. This limit is approximately 4-fold lower than previously possible. We anticipate that nanomolar concentration measurements will lead to further advancements in the use of ESR, especially in cellular contexts.
Collapse
Affiliation(s)
- Alysia Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
5
|
Bogetti X, Bogetti A, Casto J, Rule G, Chong L, Saxena S. Direct observation of negative cooperativity in a detoxification enzyme at the atomic level by Electron Paramagnetic Resonance spectroscopy and simulation. Protein Sci 2023; 32:e4770. [PMID: 37632831 PMCID: PMC10503414 DOI: 10.1002/pro.4770] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The catalytic activity of human glutathione S-transferase A1-1 (hGSTA1-1), a homodimeric detoxification enzyme, is dependent on the conformational dynamics of a key C-terminal helix α9 in each monomer. However, the structural details of how the two monomers interact upon binding of substrates is not well understood and the structure of the ligand-free state of the hGSTA1-1 homodimer has not been resolved. Here, we used a combination of electron paramagnetic resonance (EPR) distance measurements and weighted ensemble (WE) simulations to characterize the conformational ensemble of the ligand-free state at the atomic level. EPR measurements reveal a broad distance distribution between a pair of Cu(II) labels in the ligand-free state that gradually shifts and narrows as a function of increasing ligand concentration. These shifts suggest changes in the relative positioning of the two α9 helices upon ligand binding. WE simulations generated unbiased pathways for the seconds-timescale transition between alternate states of the enzyme, leading to the generation of atomically detailed structures of the ligand-free state. Notably, the simulations provide direct observations of negative cooperativity between the monomers of hGSTA1-1, which involve the mutually exclusive docking of α9 in each monomer as a lid over the active site. We identify key interactions between residues that lead to this negative cooperativity. Negative cooperativity may be essential for interaction of hGSTA1-1 with a wide variety of toxic substrates and their subsequent neutralization. More broadly, this work demonstrates the power of integrating EPR distances with WE rare-events sampling strategy to gain mechanistic information on protein function at the atomic level.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anthony Bogetti
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Joshua Casto
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gordon Rule
- Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Lillian Chong
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
Casto J, Bogetti X, Hunter HR, Hasanbasri Z, Saxena S. "Store-bought is fine": Sensitivity considerations using shaped pulses for DEER measurements on Cu(II) labels. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107413. [PMID: 36867974 DOI: 10.1016/j.jmr.2023.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The narrow excitation bandwidth of monochromic pulses is a sensitivity limitation for pulsed dipolar spectroscopy on Cu(II)-based measurements. In response, frequency-swept pulses with large excitation bandwidths have been adopted to probe a greater range of the EPR spectrum. However, much of the work utilizing frequency-swept pulses in Cu(II) distance measurements has been carried out on home-built spectrometers and equipment. Herein, we carry out systematic Cu(II) based distance measurements to demonstrate the capability of chirp pulses on commercial instrumentation. More importantly we delineate sensitivity considerations under acquisition schemes that are necessary for robust distance measurements using Cu(II) labels for proteins. We show that a 200 MHz sweeping bandwidth chirp pulse can improve the sensitivity of long-range distance measurements by factors of three to four. The sensitivity of short-range distances only increases slightly due to special considerations for the chirp pulse duration relative to the period length of the modulated dipolar signal. Enhancements in sensitivity also dramatically reduce measurement collection times enabling rapid collection of orientationally averaged Cu(II) distance measurements in under two hours.
Collapse
Affiliation(s)
- Joshua Casto
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Hannah R Hunter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
7
|
Hasanbasri Z, Moriglioni NA, Saxena S. Efficient sampling of molecular orientations for Cu(II)-based DEER on protein labels. Phys Chem Chem Phys 2023; 25:13275-13288. [PMID: 36939213 DOI: 10.1039/d3cp00404j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Combining rigid Cu(II) labels and pulsed-EPR techniques enables distance constraint measurements that are incisive probes of protein structure and dynamics. However, the labels can lead to a dipolar signal that is biased by the relative orientation of the two spins, which is typically unknown a priori in a bilabeled protein. This effect, dubbed orientational selectivity, becomes a bottleneck in measuring distances. This phenomenon also applies to other pulsed-EPR techniques that probe electron-nucleus interactions. In this work, we dissect orientational selectivity by generating an in silico sample of Cu(II)-labeled proteins to evaluate pulse excitation in the context of double electron-electron resonance (DEER) at Q-band frequencies. This approach enables the observation of the contribution of each protein orientation to the dipolar signal, which provides direct insights into optimizing acquisition schemes to mitigate orientational effects. Furthermore, we incorporate the excitation profile of realistic pulses to identify the excited spins. With this method, we show that rectangular pulses, despite their imperfect inversion capability, can sample similar spin orientations as other sophisticated pulses with the same bandwidth. Additionally, we reveal that the efficiency of exciting spin-pairs in DEER depends on the frequency offset of two pulses used in the experiment and the relative orientation of the two spins. Therefore, we systematically examine the frequency offset of the two pulses used in this double resonance experiment to determine the optimal frequency offset for optimal distance measurements. This procedure leads to a protocol where two measurements are sufficient to acquire orientational-independent DEER at Q-band. Notably, this procedure is feasible with any commercial pulsed-EPR spectrometer. Furthermore, we experimentally validate the computational results using DEER experiments on two different proteins. Finally, we show that increasing the amplitude of the rectangular pulse can increase the efficiency of DEER experiments by almost threefold. Overall, this work provides an attractive new approach for analyzing pulsed-EPR spectroscopy to obtain microscopic nuances that cannot be easily discerned from analytical or numerical calculations.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
8
|
Seal M, Feintuch A, Goldfarb D. The effect of spin-lattice relaxation on DEER background decay. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107327. [PMID: 36410061 DOI: 10.1016/j.jmr.2022.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The common approach to background removal in double electron-electron resonance (DEER) measurements on frozen solutions with a three-dimensional homogeneous distribution of doubly labeled biomolecules is to fit the background to an exponential decay function. Excluded volume effects or distribution in a dimension lower than three, such as proteins in a membrane, can lead to a stretched exponential decay. In this work, we show that in cases of spin labels with short spin-lattice relaxation time, up to an order of magnitude longer than the DEER trace length, relevant for metal-based spin labels, spin flips that take place during the DEER evolution time affect the background decay shape. This was demonstrated using a series of temperature-dependent DEER measurements on frozen solutions of a nitroxide radical, a Gd(III) complex, Cu(II) ions, and a bis-Gd(III) model complex. As expected, the background decay was exponential for the nitroxide, whereas deviations were noted for Gd(III) and Cu(II). Based on the theoretical approach of Keller et al. (Phys. Chem. Chem. Phys. 21 (2019) 8228-8245), which addresses the effect of spin-lattice relaxation-induced spin flips during the evolution time, we show that the background decay can be fitted to an exponent including a linear and quadratic term in t, which is the position of the pump pulse. Analysis of the data in terms of the probability of spontaneous spin flips induced by spin-lattice relaxation showed that this approach worked well for the high temperature range studied for Gd(III) and Cu(II). At the low temperature range, the spin flips that occured during the DEER evolution time for Gd(III) exceeded the measured spin-lattice relaxation rate and include contributions from spin flips due to another mechanisms, most likely nuclear spin diffusion.
Collapse
Affiliation(s)
- Manas Seal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Akiva Feintuch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
9
|
Hofmann L, Mandato A, Saxena S, Ruthstein S. The use of EPR spectroscopy to study transcription mechanisms. Biophys Rev 2022; 14:1141-1159. [PMID: 36345280 PMCID: PMC9636360 DOI: 10.1007/s12551-022-01004-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 02/08/2023] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has become a promising structural biology tool to resolve complex and dynamic biological mechanisms in-vitro and in-cell. Here, we focus on the advantages of continuous wave (CW) and pulsed EPR distance measurements to resolve transcription processes and protein-DNA interaction. The wide range of spin-labeling approaches that can be used to follow structural changes in both protein and DNA render EPR a powerful method to study protein-DNA interactions and structure-function relationships in other macromolecular complexes. EPR-derived data goes well beyond static structural information and thus serves as the method of choice if dynamic insight is needed. Herein, we describe the conceptual details of the theory and the methodology and illustrate the use of EPR to study the protein-DNA interaction of the copper-sensitive transcription factor, CueR.
Collapse
Affiliation(s)
- L. Hofmann
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - A. Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA USA
| | - S. Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA USA
| | - S. Ruthstein
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
10
|
Singewald K, Wilkinson JA, Hasanbasri Z, Saxena S. Beyond structure: Deciphering site-specific dynamics in proteins from double histidine-based EPR measurements. Protein Sci 2022; 31:e4359. [PMID: 35762707 PMCID: PMC9202549 DOI: 10.1002/pro.4359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/27/2022]
Abstract
Site-specific dynamics in proteins are at the heart of protein function. While electron paramagnetic resonance (EPR) has potential to measure dynamics in large protein complexes, the reliance on flexible nitroxide labels is limitating especially for the accurate measurement of site-specific β-sheet dynamics. Here, we employed EPR spectroscopy to measure site-specific dynamics across the surface of a protein, GB1. Through the use of the double Histidine (dHis) motif, which enables labeling with a Cu(II) - nitrilotriacetic acid (NTA) complex, dynamics information was obtained for both α-helical and β-sheet sites. Spectral simulations of the resulting CW-EPR report unique site-specific fluctuations across the surface of GB1. Additionally, we performed molecular dynamics (MD) simulations to complement the EPR data. The dynamics observed from MD agree with the EPR results. Furthermore, we observe small changes in gǁ values for different sites, which may be due to small differences in coordination geometry and/or local electrostatics of the site. Taken together, this work expands the utility of Cu(II)NTA-based EPR measurements to probe information beyond distance constraints.
Collapse
Affiliation(s)
- Kevin Singewald
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| | | | | | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
11
|
Bogetti X, Hasanbasri Z, Hunter HR, Saxena S. An optimal acquisition scheme for Q-band EPR distance measurements using Cu 2+-based protein labels. Phys Chem Chem Phys 2022; 24:14727-14739. [PMID: 35574729 DOI: 10.1039/d2cp01032a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent advances in site-directed Cu2+ labeling of proteins and nucleic acids have added an attractive new methodology to measure the structure-function relationship in biomolecules. Despite the promise, accessing the higher sensitivity of Q-band Double Electron Electron Resonance (DEER) has been challenging for Cu2+ labels designed for proteins. Q-band DEER experiments on this label typically require many measurements at different magnetic fields, since the pulses can excite only a few orientations at a given magnetic field. Herein, we analyze such orientational effects through simulations and show that three DEER measurements, at strategically selected magnetic fields, are generally sufficient to acquire an orientational-averaged DEER time trace for this spin label at Q-band. The modeling results are experimentally verified on Cu2+ labeled human glutathione S-transferase (hGSTA1-1). The DEER distance distribution measured at the Q-band shows good agreement with the distance distribution sampled by molecular dynamics (MD) simulations and X-band experiments. The concordance of MD sampled distances and experimentally measured distances adds growing evidence that MD simulations can accurately predict distances for the Cu2+ labels, which remains a key bottleneck for the commonly used nitroxide label. In all, this minimal collection scheme reduces data collection time by as much as six-fold and is generally applicable to many octahedrally coordinated Cu2+ systems. Furthermore, the concepts presented here may be applied to other metals and pulsed EPR experiments.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Hannah R Hunter
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, PA 15260, USA.
| |
Collapse
|
12
|
Casto J, Mandato A, Hofmann L, Yakobov I, Ghosh S, Ruthstein S, Saxena S. Cu(II)-based DNA Labeling Identifies the Structural Link Between Activation and Termination in a Metalloregulator. Chem Sci 2022; 13:1693-1697. [PMID: 35282619 PMCID: PMC8827015 DOI: 10.1039/d1sc06563g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/16/2022] [Indexed: 11/25/2022] Open
Abstract
Understanding the structural and mechanistic details of protein-DNA interactions that lead to cellular defence against toxic metal ions in pathogenic bacteria can lead to new ways of combating their virulence. Herein, we examine the Copper Efflux Regulator (CueR) protein, a transcription factor which interacts with DNA to generate proteins that ameliorate excess free Cu(i). We exploit site directed Cu(ii) labeling to measure the conformational changes in DNA as a function of protein and Cu(i) concentration. Unexpectedly, the EPR data indicate that the protein can bend the DNA at high protein concentrations even in the Cu(i)-free state. On the other hand, the bent state of the DNA is accessed at a low protein concentration in the presence of Cu(i). Such bending enables the coordination of the DNA with RNA polymerase. Taken together, the results lead to a structural understanding of how transcription is activated in response to Cu(i) stress and how Cu(i)-free CueR can replace Cu(i)-bound CueR in the protein-DNA complex to terminate transcription. This work also highlights the utility of EPR to measure structural data under conditions that are difficult to access in order to shed light on protein function. Herein, we exploit site-directed Cu(ii)-labeling to measure the DNA conformations in each step of the transcription cycle of the Copper Efflux Regulator (CueR), in order to establish how transcription is activated and terminated.![]()
Collapse
Affiliation(s)
- Joshua Casto
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Alysia Mandato
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, The Institution of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Idan Yakobov
- Department of Chemistry, Faculty of Exact Sciences, The Institution of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Sharon Ruthstein
- Department of Chemistry, Faculty of Exact Sciences, The Institution of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
13
|
Singewald K, Wilkinson JA, Saxena AS. Copper Based Site-directed Spin Labeling of Proteins for Use in Pulsed and Continuous Wave EPR Spectroscopy. Bio Protoc 2021; 11:e4258. [PMID: 35087917 DOI: 10.21769/bioprotoc.4258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/02/2022] Open
Abstract
Site-directed spin labeling in conjunction with electron paramagnetic resonance (EPR) is an attractive approach to measure residue specific dynamics and point-to-point distance distributions in a biomolecule. Here, we focus on the labeling of proteins with a Cu(II)-nitrilotriacetic acid (NTA) complex, by exploiting two strategically placed histidine residues (called the dHis motif). This labeling strategy has emerged as a means to overcome key limitations of many spin labels. Through utilizing the dHis motif, Cu(II)NTA rigidly binds to a protein without depending on cysteine residues. This protocol outlines three major points: the synthesis of the Cu(II)NTA complex; the measurement of continuous wave and pulsed EPR spectra, to verify a successful synthesis, as well as successful protein labeling; and utilizing Cu(II)NTA labeled proteins, to measure distance constraints and backbone dynamics. In doing so, EPR measurements are less influenced by sidechain motion, which influences the breadth of the measured distance distributions between two spins, as well as the measured residue-specific dynamics. More broadly, such EPR-based distance measurements provide unique structural constraints for integrative structural biophysics and complement traditional biophysical techniques, such as NMR, cryo-EM, FRET, and crystallography. Graphic abstract: Monitoring the success of Cu(II)NTA labeling.
Collapse
Affiliation(s)
- Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, USA
| | | | - And Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|