1
|
Kjellgren ER, Reinholdt P, Ziems KM, Sauer SPA, Coriani S, Kongsted J. Divergences in classical and quantum linear response and equation of motion formulations. J Chem Phys 2024; 161:124112. [PMID: 39319646 DOI: 10.1063/5.0225409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Calculating molecular properties using quantum devices can be performed through the quantum linear response (qLR) or, equivalently, the quantum equation of motion (qEOM) formulations. Different parameterizations of qLR and qEOM are available, namely naïve, projected, self-consistent, and state-transfer. In the naïve and projected parameterizations, the metric is not the identity, and we show that it depends on redundant orbital rotations. This dependency may lead to divergences in the excitation energies for certain choices of the redundant orbital rotation parameters in an idealized noiseless setting. Furthermore, this leads to a significant variance when calculations include statistical noise from finite quantum sampling.
Collapse
Affiliation(s)
- Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Karl Michael Ziems
- DTU Chemistry, Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Sonia Coriani
- DTU Chemistry, Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
2
|
Fu L, Wu Y, Shang H, Yang J. Transformer-Based Neural-Network Quantum State Method for Electronic Band Structures of Real Solids. J Chem Theory Comput 2024; 20:6218-6226. [PMID: 38976399 DOI: 10.1021/acs.jctc.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Recent advancements in neural networks have led to significant progress in addressing many-body electron correlations in small molecules and various physical models. In this work, we propose QiankunNet-Solid, which incorporates periodic boundary conditions into the neural network quantum state (NNQS) framework based on generative Transformer architecture along with a batched autoregressive sampling (BAS) method, enabling the effective ab initio calculation of real solid materials. The accuracy of this method is demonstrated in one-, two-, and three-dimensional periodic systems, with results comparable to those of full configuration interaction and coupled-cluster method, even in the strongly correlated regime. Furthermore, we compute the band structures and density of states for silicon crystal. The successful incorporation of periodic boundary conditions into the NNQS framework through QiankunNet-Solid opens up new possibilities for the accurate and efficient study of electronic structure properties in solid-state physics.
Collapse
Affiliation(s)
- Lizhong Fu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yangjun Wu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Honghui Shang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, , Hefei 230088, China
| |
Collapse
|
3
|
Kumar A, Asthana A, Abraham V, Crawford TD, Mayhall NJ, Zhang Y, Cincio L, Tretiak S, Dub PA. Quantum Simulation of Molecular Response Properties in the NISQ Era. J Chem Theory Comput 2023; 19:9136-9150. [PMID: 38054645 DOI: 10.1021/acs.jctc.3c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Accurate modeling of the response of molecular systems to an external electromagnetic field is challenging on classical computers, especially in the regime of strong electronic correlation. In this article, we develop a quantum linear response (qLR) theory to calculate molecular response properties on near-term quantum computers. Inspired by the recently developed variants of the quantum counterpart of equation of motion (qEOM) theory, the qLR formalism employs "killer condition" satisfying excitation operator manifolds that offer a number of theoretical advantages along with reduced quantum resource requirements. We also used the qEOM framework in this work to calculate the state-specific response properties. Further, through noiseless quantum simulations, we show that response properties calculated using the qLR approach are more accurate than the ones obtained from the classical coupled-cluster-based linear response models due to the improved quality of the ground-state wave function obtained using the ADAPT-VQE algorithm.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ayush Asthana
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Vibin Abraham
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - T Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lukasz Cincio
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pavel A Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
4
|
Fan Y, Cao C, Xu X, Li Z, Lv D, Yung MH. Circuit-Depth Reduction of Unitary-Coupled-Cluster Ansatz by Energy Sorting. J Phys Chem Lett 2023; 14:9596-9603. [PMID: 37862387 DOI: 10.1021/acs.jpclett.3c01804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Quantum computation represents a revolutionary approach to solving problems in quantum chemistry. However, due to the limited quantum resources in the current noisy intermediate-scale quantum (NISQ) devices, quantum algorithms for large chemical systems remain a major task. In this work, we demonstrate that the circuit depth of the unitary coupled cluster (UCC) and UCC-based ansatzes in the algorithm of the variational quantum eigensolver can be significantly reduced by an energy-sorting strategy. Specifically, subsets of excitation operators are first prescreened from the operator pool according to its contribution to the total energy. The quantum circuit ansatz is then iteratively constructed until convergence of the final energy to a typical accuracy. For demonstration, this method has been successfully applied to molecular and periodic systems. Particularly, a reduction of 50%-98% in the number of operators is observed while retaining the accuracy of the original UCCSD operator pools. This method can be straightforwardly extended to general parametric variational ansatzes.
Collapse
Affiliation(s)
- Yi Fan
- Central Research Institute, 2012 Laboratories, Huawei Technologies, Shenzhen 518129, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Changsu Cao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xusheng Xu
- Central Research Institute, 2012 Laboratories, Huawei Technologies, Shenzhen 518129, China
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dingshun Lv
- Central Research Institute, 2012 Laboratories, Huawei Technologies, Shenzhen 518129, China
| | - Man-Hong Yung
- Central Research Institute, 2012 Laboratories, Huawei Technologies, Shenzhen 518129, China
| |
Collapse
|
5
|
Fan Y, Liu J, Li Z, Yang J. Quantum Circuit Matrix Product State Ansatz for Large-Scale Simulations of Molecules. J Chem Theory Comput 2023; 19:5407-5417. [PMID: 37503552 DOI: 10.1021/acs.jctc.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
As demonstrated in the density matrix renormalization group (DMRG) method, approximating many-body wave function of electrons using a matrix product state (MPS) is a promising way to solve electronic structure problems. The expressibility of an MPS is determined by the size of the matrices or, in other words, the bond dimension, which unfortunately may be required to be very large in quantum chemistry simulations. In this study, we propose to calculate the ground state energies of molecular systems by variationally optimizing quantum circuit MPS (QCMPS) with a relatively small number of qubits. It is demonstrated that with carefully chosen circuit structure and orbital localization scheme, QCMPS can reach a similar accuracy as that achieved in DMRG with an exponentially large bond dimension. QCMPS simulation of a linear hydrogen molecular chain with 50 orbitals can reach the chemical accuracy using only 6 qubits at a moderate circuit depth. These results suggest that QCMPS is a promising wave function ansatz in the variational quantum eigensolver algorithm for molecular systems.
Collapse
Affiliation(s)
- Yi Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Liu
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Zhenyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
6
|
Kim Y, Krylov AI. Two Algorithms for Excited-State Quantum Solvers: Theory and Application to EOM-UCCSD. J Phys Chem A 2023; 127:6552-6566. [PMID: 37505075 DOI: 10.1021/acs.jpca.3c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Near-term quantum devices promise to revolutionize quantum chemistry, but simulations using the current noisy intermediate-scale quantum (NISQ) devices are not practical due to their high susceptibility to errors. This motivated the design of NISQ algorithms leveraging classical and quantum resources. While several developments have shown promising results for ground-state simulations, extending the algorithms to excited states remains challenging. This paper presents two cost-efficient excited-state algorithms inspired by the classical Davidson algorithm. We implemented the Davidson method into the quantum self-consistent equation-of-motion unitary coupled-cluster (q-sc-EOM-UCC) excited-state method adapted for quantum hardware. The circuit strategies for generating desired excited states are discussed, implemented, and tested. We demonstrate the performance and accuracy of the proposed algorithms (q-sc-EOM-UCC/Davidson and its variational variant) by simulations of H2, H4, LiH, and H2O molecules. Similar to the classical Davidson scheme, q-sc-EOM-UCC/Davidson algorithms are capable of targeting a small number of excited states of the desired character.
Collapse
Affiliation(s)
- Yongbin Kim
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
7
|
Shang H, Fan Y, Shen L, Guo C, Liu J, Duan X, Li F, Li Z. Towards practical and massively parallel quantum computing emulation for quantum chemistry. NPJ QUANTUM INFORMATION 2023; 9:33. [PMID: 37042014 PMCID: PMC10080531 DOI: 10.1038/s41534-023-00696-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/09/2023] [Indexed: 06/16/2023]
Abstract
Quantum computing is moving beyond its early stage and seeking for commercial applications in chemical and biomedical sciences. In the current noisy intermediate-scale quantum computing era, the quantum resource is too scarce to support these explorations. Therefore, it is valuable to emulate quantum computing on classical computers for developing quantum algorithms and validating quantum hardware. However, existing simulators mostly suffer from the memory bottleneck so developing the approaches for large-scale quantum chemistry calculations remains challenging. Here we demonstrate a high-performance and massively parallel variational quantum eigensolver (VQE) simulator based on matrix product states, combined with embedding theory for solving large-scale quantum computing emulation for quantum chemistry on HPC platforms. We apply this method to study the torsional barrier of ethane and the quantification of the protein-ligand interactions. Our largest simulation reaches 1000 qubits, and a performance of 216.9 PFLOP/s is achieved on a new Sunway supercomputer, which sets the state-of-the-art for quantum computing emulation for quantum chemistry.
Collapse
Affiliation(s)
- Honghui Shang
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Yi Fan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Li Shen
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Chu Guo
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, China
| | - Jie Liu
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Xiaohui Duan
- School of Software, Shandong University, Jinan, China
| | - Fang Li
- National Research Center of Parallel Computer Engineering and Technology, Beijing, China
| | - Zhenyu Li
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Ma H, Liu J, Shang H, Fan Y, Li Z, Yang J. Multiscale quantum algorithms for quantum chemistry. Chem Sci 2023; 14:3190-3205. [PMID: 36970085 PMCID: PMC10034224 DOI: 10.1039/d2sc06875c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Exploring the potential applications of quantum computers in material design and drug discovery is attracting more and more attention after quantum advantage has been demonstrated using Gaussian boson sampling. However, quantum resource requirements in material and (bio)molecular simulations are far beyond the capacity of near-term quantum devices. In this work, multiscale quantum computing is proposed for quantum simulations of complex systems by integrating multiple computational methods at different scales of resolution. In this framework, most computational methods can be implemented in an efficient way on classical computers, leaving the critical portion of the computation to quantum computers. The simulation scale of quantum computing strongly depends on available quantum resources. As a near-term scheme, we integrate adaptive variational quantum eigensolver algorithms, second-order Møller-Plesset perturbation theory and Hartree-Fock theory within the framework of the many-body expansion fragmentation approach. This new algorithm is applied to model systems consisting of hundreds of orbitals with decent accuracy on the classical simulator. This work should encourage further studies on quantum computing for solving practical material and biochemistry problems.
Collapse
Affiliation(s)
- Huan Ma
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
| | - Jie Liu
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
| | - Honghui Shang
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences Beijing 100190 China
| | - Yi Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Zhenyu Li
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Jinlong Yang
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
9
|
Asthana A, Kumar A, Abraham V, Grimsley H, Zhang Y, Cincio L, Tretiak S, Dub PA, Economou SE, Barnes E, Mayhall NJ. Quantum self-consistent equation-of-motion method for computing molecular excitation energies, ionization potentials, and electron affinities on a quantum computer. Chem Sci 2023; 14:2405-2418. [PMID: 36873839 PMCID: PMC9977410 DOI: 10.1039/d2sc05371c] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Near-term quantum computers are expected to facilitate material and chemical research through accurate molecular simulations. Several developments have already shown that accurate ground-state energies for small molecules can be evaluated on present-day quantum devices. Although electronically excited states play a vital role in chemical processes and applications, the search for a reliable and practical approach for routine excited-state calculations on near-term quantum devices is ongoing. Inspired by excited-state methods developed for the unitary coupled-cluster theory in quantum chemistry, we present an equation-of-motion-based method to compute excitation energies following the variational quantum eigensolver algorithm for ground-state calculations on a quantum computer. We perform numerical simulations on H2, H4, H2O, and LiH molecules to test our quantum self-consistent equation-of-motion (q-sc-EOM) method and compare it to other current state-of-the-art methods. q-sc-EOM makes use of self-consistent operators to satisfy the vacuum annihilation condition, a critical property for accurate calculations. It provides real and size-intensive energy differences corresponding to vertical excitation energies, ionization potentials and electron affinities. We also find that q-sc-EOM is more suitable for implementation on NISQ devices as it is expected to be more resilient to noise compared with the currently available methods.
Collapse
Affiliation(s)
- Ayush Asthana
- Department of Chemistry, Virginia Tech Blacksburg 24061 VA USA
- Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA
| | - Ashutosh Kumar
- Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA
| | - Vibin Abraham
- Department of Chemistry, University of Michigan Ann Arbor 48109 MI USA
| | - Harper Grimsley
- Department of Chemistry, Virginia Tech Blacksburg 24061 VA USA
- Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA
| | - Lukasz Cincio
- Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory Los Alamos 87545 NM USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory Los Alamos 87545 NM USA
| | - Pavel A Dub
- Chemistry Division, Los Alamos National Laboratory Los Alamos 87545 NM USA
| | - Sophia E Economou
- Department of Physics, Virginia Tech Blacksburg 24061 VA USA
- Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA
| | - Edwin Barnes
- Department of Physics, Virginia Tech Blacksburg 24061 VA USA
- Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA
| | - Nicholas J Mayhall
- Department of Chemistry, Virginia Tech Blacksburg 24061 VA USA
- Virginia Tech Center for Quantum Information Science and Engineering Blacksburg 24061 VA USA
| |
Collapse
|
10
|
Tsuchimochi T, Ryo Y, Ten-No SL, Sasasako K. Improved Algorithms of Quantum Imaginary Time Evolution for Ground and Excited States of Molecular Systems. J Chem Theory Comput 2023; 19:503-513. [PMID: 36638274 DOI: 10.1021/acs.jctc.2c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Quantum imaginary time evolution (QITE) is a recently proposed quantum-classical hybrid algorithm that is guaranteed to reach the lowest state of systems. In this study, we present several improvements on QITE, mainly focusing on molecular applications. We analyze the derivation of the underlying QITE equation order-by-order and suggest a modification that is theoretically well founded. Our results clearly indicate the soundness of the here-derived equation, enabling a better approximation of the imaginary time propagation by a unitary. We also discuss how to accurately estimate the norm of an imaginary-time-evolved state and applied it to excited-state calculations using the quantum Lanczos algorithm. Finally, we propose the folded-spectrum QITE scheme as a straightforward extension of QITE for general excited-state simulations. The effectiveness of all these developments is illustrated by simulations with or without noise effect, offering further insights into quantum algorithms for imaginary time evolution.
Collapse
Affiliation(s)
- Takashi Tsuchimochi
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho Kawaguchi, Saitama332-0012, Japan
| | - Yoohee Ryo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Seiichiro L Ten-No
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Kazuki Sasasako
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| |
Collapse
|
11
|
Liu J, Li Z, Yang J. Reducing Circuit Depth in Adaptive Variational Quantum Algorithms via Effective Hamiltonian Theories. J Chem Theory Comput 2022; 18:4795-4805. [DOI: 10.1021/acs.jctc.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Liu
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Zhenyu Li
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jinlong Yang
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Liu J, Fan Y, Li Z, Yang J. Quantum algorithms for electronic structures: basis sets and boundary conditions. Chem Soc Rev 2022; 51:3263-3279. [PMID: 35352716 DOI: 10.1039/d1cs01184g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The advantages of quantum computers are believed to significantly change the research paradigm of chemical and materials sciences, where computational characterization and theoretical design play an increasingly important role. It is especially desirable to solve the electronic structure problem, a central problem in chemistry and materials science, efficiently and accurately with well-designed quantum algorithms. Various quantum electronic-structure algorithms have been proposed in the literature. In this article, we briefly review recent progress in this direction with a special emphasis on the basis sets and boundary conditions. Compared to classical electronic structure calculations, there are new considerations in choosing a basis set in quantum algorithms. For example, the effect of the basis set on the circuit complexity is very important in quantum algorithm design. Electronic structure calculations should be performed with an appropriate boundary condition. Simply using a wave function ansatz designed for molecular systems in a material system with a periodic boundary condition may lead to significant errors. Artificial boundary conditions can be used to partition a large system into smaller fragments to save quantum resources. The basis sets and boundary conditions are expected to play a crucial role in electronic structure calculations on future quantum computers, especially for realistic systems.
Collapse
Affiliation(s)
- Jie Liu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yi Fan
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
13
|
Feng Y, Zhong H. Celebrating the 10th Anniversary of the Youth Innovation Promotion Association, Chinese Academy of Sciences: Emerging Young Scientists in Physical Chemistry. J Phys Chem Lett 2022; 13:650-652. [PMID: 35045711 DOI: 10.1021/acs.jpclett.1c04206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Yu Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Haizheng Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China
| |
Collapse
|
14
|
Lavroff RH, Pennington DL, Hua AS, Li BY, Williams JA, Alexandrova AN. Recent Innovations in Solid-State and Molecular Qubits for Quantum Information Applications. J Phys Chem A 2021; 125:9567-9570. [PMID: 34758615 DOI: 10.1021/acs.jpca.1c08677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert H Lavroff
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Doran L Pennington
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Barry Yangtao Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jillian A Williams
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
15
|
Lavroff RH, Pennington DL, Hua AS, Li BY, Williams JA, Alexandrova AN. Recent Innovations in Solid-State and Molecular Qubits for Quantum Information Applications. J Phys Chem B 2021; 125:12111-12114. [PMID: 34758628 DOI: 10.1021/acs.jpcb.1c08679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert H Lavroff
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Doran L Pennington
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Barry Yangtao Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jillian A Williams
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
16
|
Lavroff RH, Pennington DL, Hua AS, Li BY, Williams JA, Alexandrova AN. Recent Innovations in Solid-State and Molecular Qubits for Quantum Information Applications. J Phys Chem Lett 2021; 12:10742-10745. [PMID: 34758627 DOI: 10.1021/acs.jpclett.1c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Robert H Lavroff
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Doran L Pennington
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Barry Yangtao Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jillian A Williams
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|