1
|
Liu J, Zhang Y, Liu X, Wen L, Wan L, Song C, Xin J, Liang Q. Solution Sequential Deposition Pseudo-Planar Heterojunction: An Efficient Strategy for State-of-Art Organic Solar Cells. SMALL METHODS 2024:e2301803. [PMID: 38386309 DOI: 10.1002/smtd.202301803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Organic solar cells (OSCs) are considered as a promising new generation of clean energy. Bulk heterojunction (BHJ) structure has been widely employed in the active layer of efficient OSCs. However, precise regulation of morphology in BHJ is still challenging due to the competitive coupling between crystallization and phase separation. Recently, a novel pseudo-planar heterojunction (PPHJ) structure, prepared through solution sequential deposition, has attracted much attention. It is an easy-to-prepare structure in which the phase separation structures, interfaces, and molecular packing can be separately controlled. Employing PPHJ structure, the properties of OSCs, such as power conversion efficiency, stability, transparency, flexibility, and so on, are usually better than its BHJ counterpart. Hence, a comprehensive understanding of the film-forming process, morphology control, and device performance of PPHJ structure should be considered. In terms of the representative works about PPHJ, this review first introduces the fabrication process of active layers based on PPHJ structure. Second, the widely applied morphology control methods in PPHJ structure are summarized. Then, the influences of PPHJ structure on device performance and other property are reviewed, which largely expand its application. Finally, a brief prospect and development tendency of PPHJ devices are discussed with the consideration of their challenges.
Collapse
Affiliation(s)
- Jiangang Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Yutong Zhang
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Xingpeng Liu
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Liangquan Wen
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Longjing Wan
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Chunpeng Song
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Jingming Xin
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| | - Qiuju Liang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710129, P.R. China
| |
Collapse
|
2
|
Nagatomo T, Vats AK, Matsuo K, Oyama S, Okamoto N, Suzuki M, Koganezawa T, Fuki M, Masuo S, Ohta K, Yamada H, Kobori Y. Nonpolymer Organic Solar Cells: Microscopic Phonon Control to Suppress Nonradiative Voltage Loss via Charge-Separated State. ACS PHYSICAL CHEMISTRY AU 2022; 3:207-221. [PMID: 36968446 PMCID: PMC10037453 DOI: 10.1021/acsphyschemau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
Recent remarkable developments on nonfullerene solar cells have reached a photoelectric conversion efficiency (PCE) of 18% by tuning the band energy levels in small molecular acceptors. In this regard, understanding the impact of small donor molecules on nonpolymer solar cells is essential. Here, we systematically investigated mechanisms of solar cell performance using diketopyrrolopyrrole (DPP)-tetrabenzoporphyrin (BP) conjugates of C4-DPP-H2BP and C4-DPP-ZnBP, where C4 represents the butyl group substituted at the DPP unit as small p-type molecules, while an acceptor of [6,6]-phenyl-C61-buthylic acid methyl ester is employed. We clarified the microscopic origins of the photocarrier caused by phonon-assisted one-dimensional (1D) electron-hole dissociations at the donor-acceptor interface. Using a time-resolved electron paramagnetic resonance, we have characterized controlled charge-recombination by manipulating disorders in π-π donor stacking. This ensures carrier transport through stacking molecular conformations to suppress nonradiative voltage loss capturing specific interfacial radical pairs separated by 1.8 nm in bulk-heterojunction solar cells. We show that, while disordered lattice motions by the π-π stackings via zinc ligation are essential to enhance the entropy for charge dissociations at the interface, too much ordered crystallinity causes the backscattering phonon to reduce the open-circuit voltage by geminate charge-recombination.
Collapse
Affiliation(s)
- Takaaki Nagatomo
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe657-8501, Japan
| | - Ajendra K. Vats
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Kyohei Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Shinya Oyama
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe657-8501, Japan
| | - Naoya Okamoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Mitsuharu Suzuki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Tomoyuki Koganezawa
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo, Hyogo679-5198, Japan
| | - Masaaki Fuki
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe657-8501, Japan
| | - Sadahiro Masuo
- Department of Applied Chemistry for Environment, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo669-1337, Japan
| | - Kaoru Ohta
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe657-8501, Japan
| | - Hiroko Yamada
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara630-0192, Japan
| | - Yasuhiro Kobori
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe657-8501, Japan
| |
Collapse
|
3
|
Jee MH, Ryu HS, Lee D, Lee W, Woo HY. Recent Advances in Nonfullerene Acceptor-Based Layer-by-Layer Organic Solar Cells Using a Solution Process. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201876. [PMID: 35794317 PMCID: PMC9443470 DOI: 10.1002/advs.202201876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Recently, sequential layer-by-layer (LbL) organic solar cells (OSCs) have attracted significant attention owing to their favorable p-i-n vertical phase separation, efficient charge transport/extraction, and potential for lab-to-fab large-scale production, achieving high power conversion efficiencies (PCEs) of over 18%. This review first summarizes recent studies on various approaches to obtain ideal vertical D/A phase separation in nonfullerene acceptor (NFAs)-based LbL OSCs by proper solvent selection, processing additives, protecting solvent treatment, ternary blends, etc. Additionally, the longer exciton diffusion length of NFAs compared with fullerene derivatives, which provides a new scope for further improvement in the performance of LbL OSCs, is been discussed. Large-area device/module production by LbL techniques and device stability issues, including thermal and mechanical stability, are also reviewed. Finally, the current challenges and prospects for further progress toward their eventual commercialization are discussed.
Collapse
Affiliation(s)
- Min Hun Jee
- Department of ChemistryKU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hwa Sook Ryu
- Department of ChemistryKU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Dongmin Lee
- Department of Polymer Science and EngineeringDepartment of Energy Engineering ConvergenceKumoh National Institute of TechnologyGumiGyeongbuk39177Republic of Korea
| | - Wonho Lee
- Department of Polymer Science and EngineeringDepartment of Energy Engineering ConvergenceKumoh National Institute of TechnologyGumiGyeongbuk39177Republic of Korea
| | - Han Young Woo
- Department of ChemistryKU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|