1
|
Dhami S, Khatun MN, Sengupta C, Iyer PK, Pandey R. Substitution effects on the photoinduced excited state dynamics of perylenemonoimides in solution and thin films. Phys Chem Chem Phys 2024; 26:15600-15610. [PMID: 38757930 DOI: 10.1039/d4cp00993b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Perylene monoimide (PMI) derivatives are attracting significant attention due to their strong absorption in the visible range, thermal stability, and synthetic accessibility. These properties make them promising for application in various areas such as optoelectronic devices, photosensitizers, etc. In this work, the photophysical properties and excited state dynamics of four different PMI derivatives (PMIB, BrPMITB, PMITB, and APITB) were studied in solution and thin films utilizing steady-state and time-resolved spectroscopic techniques. Among the four PMI derivatives, APITB is designed as a donor-acceptor dyad, with thianthrene as a donor and PMI as an acceptor. The activation of the triplet state through the spin-orbit charge transfer intersystem crossing (SOCT-ISC) process in THF was observed upon substitution with the thianthrene group at the peri position of the PMI moiety. The SOCT-ISC process facilitates triplet formation in the APITB dyad within 423 ps. Meanwhile, other PMI derivatives showed fluorescence within the femtosecond timescale in THF. The PMI derivatives in thin films displayed different photo physical properties to those in THF. This discrepancy arises due to the effective intermolecular coupling between the PMI derivatives in thin films.
Collapse
Affiliation(s)
- Suman Dhami
- Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Haridwar, Uttarakhand, India.
| | - Mst Nasima Khatun
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chaitrali Sengupta
- Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Haridwar, Uttarakhand, India.
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Haridwar, Uttarakhand, India.
| |
Collapse
|
2
|
Sadowski B, Gryko DT. Dipyrrolonaphthyridinedione - (still) a mysterious cross-conjugated chromophore. Chem Sci 2023; 14:14020-14038. [PMID: 38098709 PMCID: PMC10718078 DOI: 10.1039/d3sc05272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Dipyrrolonaphthyridinediones (DPNDs) entered the chemical world in 2016. This cross-conjugated donor-acceptor skeleton can be prepared in two steps from commercially available reagents in overall yield ≈15-20% (5 mmol scale). DPNDs can be easily and regioselectively halogenated which opens an avenue to numerous derivatives as well as to π-expansion. Although certain synthetic limitations exist, the current derivatization possibilities provided impetus for numerous explorations that use DPNDs. Structural modifications enable bathochromic shift of the emission to deep-red region and reaching the optical brightness 30 000 M-1 cm-1. Intense absorption and strong emission of greenish-yellow light attracted the interest which eventually led to the discovery of their strong two-photon absorption, singlet fission in the crystalline phase and triplet sensitization. Dipyrrolonaphthyridinedione-based twistacenes broadened our knowledge on the influence of twisting angle on the fate of the molecule in the excited state. Collectively, these findings highlight the compatibility of DPNDs with various applications within organic optoelectronics.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Centre of New Technologies, University of Warsaw S. Banacha 2c 02-097 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
3
|
He G, Parenti KR, Budden PJ, Niklas J, Macdonald T, Kumarasamy E, Chen X, Yin X, McCamey DR, Poluektov OG, Campos LM, Sfeir MY. Unraveling Triplet Formation Mechanisms in Acenothiophene Chromophores. J Am Chem Soc 2023; 145:22058-22068. [PMID: 37787467 DOI: 10.1021/jacs.3c07082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Peter J Budden
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas Macdonald
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xing Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| |
Collapse
|
4
|
Sadowski B, Kaliszewska M, Clermont G, Poronik YM, Blanchard-Desce M, Piątkowski P, Gryko DT. Realization of nitroaromatic chromophores with intense two-photon brightness. Chem Commun (Camb) 2023; 59:11708-11711. [PMID: 37700732 DOI: 10.1039/d3cc03347c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Strong fluorescence is a general feature of dipyrrolonaphthyridinediones bearing two nitrophenyl substituents. Methyl groups simultaneously being weakly electron-donating and inducing steric hindrance appear to be a key structural parameter that allows for significant emission enhancement, whereas Et2N groups cause fluorescence quenching. The magnitude of two-photon absorption increases if 4-nitrophenyl substituents are present while the contribution of Et2N groups is detrimental.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, Warsaw 02-097, Poland.
| | - Marzena Kaliszewska
- Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland.
| | - Guillaume Clermont
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France.
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | | | - Piotr Piątkowski
- Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
5
|
Morgan J, Yun YJ, Jamhawi AM, Islam SM, Ayitou AJL. Photophysical Insights of Halogenated Dipyrrolonaphthyridine-Diones as Potential Photodynamic Therapy Agents †. Photochem Photobiol 2023; 99:761-768. [PMID: 36479699 DOI: 10.1111/php.13757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
We report the synthesis and photophysical characterization of novel halogenated dipyrrolonaphthyridine-diones (X2 -DPNDs, X = Cl, Br, and I), as candidates for photodynamic therapy (PDT) application. Apart from the heavy atom-induced spin-orbit coupling (SOC) dynamics in the investigated X2 -DPNDs, it was found that the position of the halogen atom (relative to the nitrogen of the pyrrole ring) also influenced the triplet excited state behavior. Interestingly, the faster/efficiency sensitization of 3 O2 to 1 O2 using X2 -DPND correlates with the rate of triplet population, kISC >1.6 × 108 s-1 for I2 -DPND vs kISC >2.9 × 109 s-1 for Cl2 -DPND and Br2 -DPND (where τISC = 343 ± 3 ps for I2 -DPND and τISC = 5-6 ns for Cl2 -DPND and Br2 -DPND are the lowest time constants/values for ISC). Furthermore, the heavy atom-induced SOC in Cl2 -DPND and Br2 -DPND did not lead to a reduction of the corresponding fluorescence (ca 75% vs 67% for the parent DPND). The attractive photophysical characteristics of Cl2 /Br2 -DPND put them on the landscape as not only promising PDT agents but also as fluorescence probes. The present study is a stepping stone in the development of novel organic photosystems for synergistic photomedicinal applications.
Collapse
Affiliation(s)
- Jayla Morgan
- Contribution from the Department of Chemistry, Illinois Institute of Technology, Chicago, IL
| | - Young Ju Yun
- Contribution from the Department of Chemistry, Illinois Institute of Technology, Chicago, IL
- Department of Chemistry, University of Illinois Chicago, Chicago, IL
| | | | - Shahidul M Islam
- Department of Chemistry, University of Illinois Chicago, Chicago, IL
| | - A Jean-Luc Ayitou
- Contribution from the Department of Chemistry, Illinois Institute of Technology, Chicago, IL
- Department of Chemistry, University of Illinois Chicago, Chicago, IL
| |
Collapse
|
6
|
Chen S, Feng S, Markvoort AJ, Zhang C, Zhou E, Liang W, Zhang HJ, Jiang YB, Lin J. Unequal Perylene Diimide Twins in a Quadruple Assembly. Angew Chem Int Ed Engl 2023; 62:e202300786. [PMID: 36792541 DOI: 10.1002/anie.202300786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Natural light-harvesting (LH) systems can divide identical dyes into unequal aggregate states, thereby achieving intelligent "allocation of labor". From a synthetic point of view, the construction of such kinds of unequal and integrated systems without the help of proteinaceous scaffolding is challenging. Here, we show that four octatetrayne-bridged ortho-perylene diimide (PDI) dyads (POPs) self-assemble into a quadruple assembly (POP)4 both in solution and in the solid state. The two identical PDI units in each POP are compartmentalized into weakly coupled PDIs (P520) and closely stacked PDIs (P550) in (POP)4 . The two extreme pools of PDI chromophores were unambiguously confirmed by single-crystal X-ray crystallography and NMR spectroscopy. To interpret the formation of the discrete quadruple assembly, we also developed a two-step cooperative model. Quantum-chemical calculations indicate the existence of multiple couplings within and across P520 and P550, which can satisfactorily describe the photophysical properties of the unequal quadruple assembly. This finding is expected to help advance the rational design of dye stacks to emulate functions of natural LH systems.
Collapse
Affiliation(s)
- Shuqi Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Albert J Markvoort
- Computational Biology Group and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (The, Netherlands
| | - Cankun Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Enyang Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, P. R. China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
7
|
Tonami T, Nakano M, Kishi R, Kitagawa Y. Effects of introducing nitrogen atoms into oligoacene skeleton on vibronic coupling and singlet fission dynamics. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Wang L, Jiang W, Guo S, Wang S, Zhang M, Liu Z, Wang G, Miao Y, Yan L, Shao JY, Zhong YW, Liu Z, Zhang D, Fu H, Yao J. Robust singlet fission process in strong absorption π-expanded diketopyrrolopyrroles. Chem Sci 2022; 13:13907-13913. [PMID: 36544745 PMCID: PMC9710207 DOI: 10.1039/d2sc05580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Singlet fission (SF) has drawn tremendous attention as a multiexciton generation process that could mitigate the thermal loss and boost the efficiency of solar energy conversion. Although a SF-based solar cell with an EQE above 100% has already been fabricated successfully, the practical efficiency of the corresponding devices is plagued by the limited scope of SF materials. Therefore, it is of great importance to design and develop new SF-capable compounds aiming at practical device application. In the current contribution, via a π-expanded strategy, we presented a new series of robust SF chromophores based on polycyclic DPP derivatives, Ex-DPPs. Compared to conventional DPP molecules, Ex-DPPs feature strong absorption with a fivefold extinction coefficient, good molecular rigidity to effectively restrain non-radiative deactivation, and an expanded π-skeleton which endow them with well-suited intermolecular packing geometries for achieving efficient SF process. These results not only provide a new type of high-efficiency SF chromophore but also address some basic guidelines for the design of potential SF materials targeting practical light harvesting applications.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of SciencesBeijing100190China
| | - Shaoting Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Senhao Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Mengfan Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Zuyuan Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Guoliang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Yanqin Miao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Chemistry, Taiyuan University of TechnologyTaiyuan 030024China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of SciencesBeijing100190China,State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou UniversityLanzhou 730000China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of SciencesBeijing100190China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal UniversityBeijing 100048China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of SciencesBeijing 100190China
| |
Collapse
|
9
|
Nagaoka T, Matsui Y, Fuki M, Ogaki T, Ohta E, Kobori Y, Ikeda H. Diphenyldihydropentalenediones: Wide Singlet-Triplet Energy Gap Compounds Possessing the Planarly Fixed Diene Subunit. ACS OMEGA 2022; 7:40364-40373. [PMID: 36385848 PMCID: PMC9648098 DOI: 10.1021/acsomega.2c05341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
2,2,5,5-Tetramethyl-3,6-diphenyl-2,5-dihydropentalene-1,4-dione (PD-H) and its dimethoxy (PD-OCH3) and bis(trifluoromethyl) derivatives (PD-CF3) were developed as a new class of compounds possessing a wide excited singlet-triplet energy gap. The PD derivatives would also have a high energy level of the triplet-excited state (E T) due to the planarity of the fused-diene subunit. The results of photophysical studies revealed that the energy level of the singlet-excited state (E S) and E T of PD-H are 2.88 and 1.43 eV, respectively. These values indicate that PD-H has the energy relationship, E S > 2E T, required for it to be a singlet fission (SF) material. Moreover, the introduction of electron-donating or -withdrawing groups on the benzene rings in PD-H enables fine-tuning of E S and E T. The results of transient absorption spectroscopic studies show that PD-H, PD-OCH3, and PD-CF3 in CH2Cl2 have respective T1 lifetimes of 71, 118, and 107 μs, which are long enough to utilize its triplet exciton in other optoelectronic systems. These findings suggest that the PDs are potential candidates for SF materials with high E T levels.
Collapse
Affiliation(s)
- Tomoki Nagaoka
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
| | - Yasunori Matsui
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
- The
Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho,
Nakaku, Sakai, Osaka599-8531, Japan
| | - Masaaki Fuki
- Molecular
Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Takuya Ogaki
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
- The
Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho,
Nakaku, Sakai, Osaka599-8531, Japan
| | - Eisuke Ohta
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
| | - Yasuhiro Kobori
- Molecular
Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
- Graduate
School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Hiroshi Ikeda
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka599-8531, Japan
- The
Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho,
Nakaku, Sakai, Osaka599-8531, Japan
| |
Collapse
|
10
|
Wang K, Ma J, Ma H. Characterizing the excited states of large photoactive systems by exciton models. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ke Wang
- School of Chemistry and Chemical Engineering Nanjing University Nanjing China
| | - Jing Ma
- School of Chemistry and Chemical Engineering Nanjing University Nanjing China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering Nanjing University Nanjing China
| |
Collapse
|
11
|
Feng S, Zhao Y, Liang W. Substituent Effect on Vibrationally Resolved Absorption Spectra and Exciton Dynamics of Dipyrrolonaphthyridinedione Aggregates. J Phys Chem A 2022; 126:6395-6406. [PMID: 36073236 DOI: 10.1021/acs.jpca.2c03907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dipyrrolonaphthyridinedione (DPND) thin films exhibit interesting photophysical properties and singlet fission (SF) processes. A recent experimental work found that the alkyl substitution in the DPND skeleton has the remarkable influence on the characteristics of electronic absorption spectra and SF rates. Here, we theoretically elucidate the microscopic mechanism of the substituent effect on the optical properties and exciton dynamics of materials by combining the electronic structure calculations and the quantum dynamics simulations. The results show that the alkyl substituent has a minor effect on the single molecular properties but dramatically changes those of DPND aggregates via varying the intermolecular interactions. The aggregates of DPND with and without alkyl side chains exhibit the more likely characters of H-type aggregations. In the former (DPND6), the weak degree of mixing of intramolecular localized excited (LE) states and intermolecular charge transfer (CT) states makes the low-energy absorption band possess the predominant optical absorption, while in the latter (DPND), the CT and LE states are close in energy, together with their strong interaction, resulting in the substantial state-mixing, so that its two low-energy absorption bands have nearly equal oscillator strengths and a wide energy spacing of more than 0.5 eV. The simulation of exciton dynamics elucidates that the photoinitiated states in both aggregates cannot generate the free charge carrier because of the lack of enough driving forces. However, the population exchanges between LE and CT states in DPND aggregates are much faster than in DPND6 aggregates, indicating the different SF behaviors, consistent with the experimental observation.
Collapse
Affiliation(s)
- Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
12
|
Xiao G, Ma YJ, Fang X, Yan D. Quadruple Anticounterfeiting Encryption: Anion-Modulated Forward and Reverse Excitation-Dependent Multicolor Afterglow in Two-Component Ionic Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30246-30255. [PMID: 35731845 DOI: 10.1021/acsami.2c08379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecule-based afterglow materials with ultralong-lived excited states have attracted great attention owing to their unique applications in light-emitting devices, information storage, and anticounterfeiting. Herein, a series of new types of two-component ionic crystalline materials were fabricated by the self-assembly of cytosine and different anions under ambient conditions. The multiple intermolecular interactions of cytosine with phosphate and halogens anions can lead to abundant energy levels and different crystal stacking modes to control molecular aggregation and excited-state intermolecular proton transfer (ESIPT) process. Interestingly, H-aggregation-induced green to yellow room-temperature phosphorescence (RTP) and ESIPT-dominated cyan RTP to deep blue thermally activated delayed fluorescence (TADF) emission can be generated by tuning excitation wavelength, time evolution, and temperature. Furthermore, the combination of two-component ionic crystals can be used as multicolored candidates for quadruple information encryption. Therefore, this work not only develops an anion-modulated strategy to achieve color-tunable afterglow from both static and dynamic fashions but also provides a guideline for designing forward/reverse excitation-dependent luminescent materials.
Collapse
Affiliation(s)
- Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Fei X, Zhang S, Zhai D, Wang Z, Lin JL, Xiao Q, Sun CL, Deng W, Zhang C, Hu W, Zhang HL. Flavanthrene derivatives as photostable and efficient singlet exciton fission materials. Chem Sci 2022; 13:9914-9920. [PMID: 36128249 PMCID: PMC9430411 DOI: 10.1039/d2sc00263a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
Singlet exciton fission (SF) is believed to have the potential to break the Shockley−Quiesser third-generation solar cell devices, so that attracted great attention. Conventional linear acene based SF materials generally...
Collapse
Affiliation(s)
- Xian Fei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - San Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Zhiwei Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 China
| | - Jin-Liang Lin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Qi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, School of Physics, Nanjing University Nanjing 210093 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Institute of Molecular Aggregation Science, Tianjin University 300072 Tianjin China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science, Institute of Molecular Aggregation Science, Tianjin University 300072 Tianjin China
| |
Collapse
|