1
|
Schröder N, Bartalucci E, Wiegand T. Probing Noncovalent Interactions by Fast Magic-Angle Spinning NMR at 100 kHz and More. Chemphyschem 2024; 25:e202400537. [PMID: 39129653 DOI: 10.1002/cphc.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Indexed: 08/13/2024]
Abstract
Noncovalent interactions are the basis for a large number of chemical and biological molecular-recognition processes, such as those occurring in supramolecular chemistry, catalysis, solid-state reactions in mechanochemistry, protein folding, protein-nucleic acid binding, and biomolecular phase separation processes. In this perspective article, some recent developments in probing noncovalent interactions by proton-detected solid-state Nuclear Magnetic Resonance (NMR) spectroscopy at Magic-Angle Spinning (MAS) frequencies of 100 kHz and more are reviewed. The development of MAS rotors with decreasing outer diameters, combined with the development of superconducting magnets operating at high static magnetic-field strengths up to 28.2 T (1200 MHz proton Larmor frequency) improves resolution and sensitivity in proton-detected solid-state NMR, which is the fundamental requirement for shedding light on noncovalent interactions in solids. The examples reported in this article range from protein-nucleic acid binding in large ATP-fueled motor proteins to a hydrogen-π interaction in a calixarene-lanthanide complex.
Collapse
Affiliation(s)
- Nina Schröder
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Ettore Bartalucci
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
2
|
Klein A, Vasa SK, Linser R. 5D solid-state NMR spectroscopy for facilitated resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2023; 77:229-245. [PMID: 37943392 PMCID: PMC10687145 DOI: 10.1007/s10858-023-00424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
1H-detected solid-state NMR spectroscopy has been becoming increasingly popular for the characterization of protein structure, dynamics, and function. Recently, we showed that higher-dimensionality solid-state NMR spectroscopy can aid resonance assignments in large micro-crystalline protein targets to combat ambiguity (Klein et al., Proc. Natl. Acad. Sci. U.S.A. 2022). However, assignments represent both, a time-limiting factor and one of the major practical disadvantages within solid-state NMR studies compared to other structural-biology techniques from a very general perspective. Here, we show that 5D solid-state NMR spectroscopy is not only justified for high-molecular-weight targets but will also be a realistic and practicable method to streamline resonance assignment in small to medium-sized protein targets, which such methodology might not have been expected to be of advantage for. Using a combination of non-uniform sampling and the signal separating algorithm for spectral reconstruction on a deuterated and proton back-exchanged micro-crystalline protein at fast magic-angle spinning, direct amide-to-amide correlations in five dimensions are obtained with competitive sensitivity compatible with common hardware and measurement time commitments. The self-sufficient backbone walks enable efficient assignment with very high confidence and can be combined with higher-dimensionality sidechain-to-backbone correlations from protonated preparations into minimal sets of experiments to be acquired for simultaneous backbone and sidechain assignment. The strategies present themselves as potent alternatives for efficient assignment compared to the traditional assignment approaches in 3D, avoiding user misassignments derived from ambiguity or loss of overview and facilitating automation. This will ease future access to NMR-based characterization for the typical solid-state NMR targets at fast MAS.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
3
|
Callon M, Luder D, Malär AA, Wiegand T, Římal V, Lecoq L, Böckmann A, Samoson A, Meier BH. High and fast: NMR protein-proton side-chain assignments at 160 kHz and 1.2 GHz. Chem Sci 2023; 14:10824-10834. [PMID: 37829013 PMCID: PMC10566471 DOI: 10.1039/d3sc03539e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
The NMR spectra of side-chain protons in proteins provide important information, not only about their structure and dynamics, but also about the mechanisms that regulate interactions between macromolecules. However, in the solid-state, these resonances are particularly difficult to resolve, even in relatively small proteins. We show that magic-angle-spinning (MAS) frequencies of 160 kHz, combined with a high magnetic field of 1200 MHz proton Larmor frequency, significantly improve their spectral resolution. We investigate in detail the gain for MAS frequencies between 110 and 160 kHz MAS for a model sample as well as for the hepatitis B viral capsid assembled from 120 core-protein (Cp) dimers. For both systems, we found a significantly improved spectral resolution of the side-chain region in the 1H-13C 2D spectra. The combination of 160 kHz MAS frequency with a magnetic field of 1200 MHz, allowed us to assign 61% of the aliphatic protons of Cp. The side-chain proton assignment opens up new possibilities for structural studies and further characterization of protein-protein or protein-nucleic acid interactions.
Collapse
Affiliation(s)
| | | | | | | | - Václav Římal
- Physical Chemistry, ETH Zürich 8093 Zürich Switzerland
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086, CNRS, Université de Lyon, Labex Ecofect 7 passage du Vercors 69367 Lyon France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086, CNRS, Université de Lyon, Labex Ecofect 7 passage du Vercors 69367 Lyon France
| | - Ago Samoson
- Institute of Cybernetics, Spin Design Laboratory, Tallinn University of Technology Tallinn Estonia
| | - Beat H Meier
- Physical Chemistry, ETH Zürich 8093 Zürich Switzerland
| |
Collapse
|
4
|
Troussicot L, Vallet A, Molin M, Burmann BM, Schanda P. Disulfide-Bond-Induced Structural Frustration and Dynamic Disorder in a Peroxiredoxin from MAS NMR. J Am Chem Soc 2023; 145:10700-10711. [PMID: 37140345 PMCID: PMC10197130 DOI: 10.1021/jacs.3c01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 05/05/2023]
Abstract
Disulfide bond formation is fundamentally important for protein structure and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive μs time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfill other favorable contacts.
Collapse
Affiliation(s)
- Laura Troussicot
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, SE-405 30 Göteborg, Sweden
- Institut
de Biologie Structurale, Univ. Grenoble
Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France
- Institute
of Science and Technology Austria, Am Campus
1, A-3400 Klosterneuburg, Austria
| | - Alicia Vallet
- Institut
de Biologie Structurale, Univ. Grenoble
Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France
| | - Mikael Molin
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Department
of Life Sciences, Chalmers University of
Technology, SE-405 30 Göteborg, Sweden
| | - Björn M. Burmann
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Paul Schanda
- Institute
of Science and Technology Austria, Am Campus
1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
5
|
Liu J, Wu XL, Zeng YT, Hu ZH, Lu JX. Solid-state NMR studies of amyloids. Structure 2023; 31:230-243. [PMID: 36750098 DOI: 10.1016/j.str.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia-Lian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Teng Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Heng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
6
|
Porat-Dahlerbruch G, Polenova T. Simultaneous recoupling of chemical shift tensors of two nuclei by R-symmetry sequences. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107382. [PMID: 36716616 PMCID: PMC10023370 DOI: 10.1016/j.jmr.2023.107382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 05/18/2023]
Abstract
Chemical shift tensors (CSTs) are sensitive probes of structure and dynamics. R-symmetry pulse sequences (RNCSA) can efficiently recouple CSTs of varying magnitudes in magic angle spinning (MAS) NMR experiments, for a broad range of conditions and MAS frequencies. Herein, we introduce dual-channel R-symmetry pulse sequences for simultaneously recording CSTs of two different nuclei in a single experiment (DORNE-CSA). We demonstrate the performance of DORNE-CSA sequences for simultaneous measurement of 13C and 15N CSTs, on a U-13C,15N-labeled microcrystalline l-histidine. We show that the DORNE-CSA method is robust, provides accurate CST parameters, and takes only half of the measurement time compared to a pair of RNCSA experiments otherwise required for recording the CSTs of individual nuclei. DORNE-CSA approach is broadly applicable to a wide range of biological and inorganic systems.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States.
| |
Collapse
|
7
|
Ahlawat S, Mopidevi SMV, Taware PP, Raran-Kurussi S, Mote KR, Agarwal V. Assignment of aromatic side-chain spins and characterization of their distance restraints at fast MAS. J Struct Biol X 2022; 7:100082. [PMID: 36618437 PMCID: PMC9817166 DOI: 10.1016/j.yjsbx.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/18/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
The assignment of aromatic side-chain spins has always been more challenging than assigning backbone and aliphatic spins. Selective labeling combined with mutagenesis has been the approach for assigning aromatic spins. This manuscript reports a method for assigning aromatic spins in a fully protonated protein by connecting them to the backbone atoms using a low-power TOBSY sequence. The pulse sequence employs residual polarization and sequential acquisitions techniques to record HN- and HC-detected spectra in a single experiment. The unambiguous assignment of aromatic spins also enables the characterization of 1H-1H distance restraints involving aromatic spins. Broadband (RFDR) and selective (BASS-SD) recoupling sequences were used to generate HN-ΗC, HC-HN and HC-HC restraints involving the side-chain proton spins of aromatic residues. This approach has been demonstrated on a fully protonated U-[13C,15N] labeled GB1 sample at 95-100 kHz MAS.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Subbarao Mohana Venkata Mopidevi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Pravin P. Taware
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Kaustubh R. Mote
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| |
Collapse
|