1
|
Shin D, Jeon Y, Nguyen VT, Kang S, Hong Y, Lim C, Yong K, Shin H, Hwang YJ. Insight into Fluoride Additives to Enhance Ammonia Production from Lithium-Mediated Electrochemical Nitrogen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404525. [PMID: 38984768 DOI: 10.1002/smll.202404525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Demands for green ammonia production increase due to its application as a proton carrier, and recent achievements in electrochemical Li-mediated nitrogen reduction reactions (Li-NRRs) show promising reliability. Here, it is demonstrated that F-containing additives in the electrolyte improve ammonia production by modulating the solid electrolyte interphase (SEI). It is suggested that the anionic additives with low lowest unoccupied molecular orbital levels enhance efficiency by contributing to the formation of a conductive SEI incorporated with LiF. Specifically, as little as 0.3 wt.% of BF4 - additive to the electrolyte, the Faradaic efficiency (FE) for ammonia production is enhanced by over 15% compared to an additive-free electrolyte, achieving a high yield of 161 ± 3 nmol s-1 cm-2. The BF4 - additive exhibits advantages, with decreased overpotential and improved FE, compared to its use as the bulk electrolyte. The observation of the Li3N upper layer implies that active Li-NRR catalytic cycles are occurring on the outermost SEI, and density functional theory simulations propose that an SEI incorporated with LiF facilitates energy profiles for the protonation by adjusting the binding energies of the intermediates compared to bare copper. This study unlocks the potential of additives and offers insights into the SEIs for efficient Li-NRRs.
Collapse
Affiliation(s)
- Dongwoo Shin
- Department of Chemistry, College of Natural Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
- Institute for Data Innovation in Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Yeongbae Jeon
- Department of Chemistry, College of Natural Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Vy Thuy Nguyen
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Shinmyeong Kang
- Department of Chemistry, College of Natural Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Yewon Hong
- Department of Chemistry, College of Natural Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Chaeeun Lim
- Surface Chemistry Laboratory of Electronic Materials (SCHEMA), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Research Center for Carbon-zero Green Ammonia Cycling (RCCGAC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kijung Yong
- Surface Chemistry Laboratory of Electronic Materials (SCHEMA), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Research Center for Carbon-zero Green Ammonia Cycling (RCCGAC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeyoung Shin
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yun Jeong Hwang
- Department of Chemistry, College of Natural Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Ma X, Liu Z, Sun H, Liang Y, Zhou H, Sun H. Cu(N 2)-Li Battery for Ammonia Synthesis. J Phys Chem Lett 2024; 15:6435-6442. [PMID: 38865163 DOI: 10.1021/acs.jpclett.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The cathodic mechanism of Li-N2 batteries is similar to Li-mediated N2 reduction (LiNR). Herein, the Li-N2, LiNR, and Cu-Li battery were amalgamated to a milliliter-scale Cu(N2)-Li system. The utilization of a lithium anode with lithium oxidation reaction (LiOR), ensures an uninterrupted supply of lithium ions to active N2. LiOR not only enhances electrolyte stability but also reduces voltage by stripping Li ions, in contrast to the inert platinum anode, commonly employed in LiNR. Notably, an unusual observation of ammonia accumulation within the anode chamber elucidates the presence and role of reaction intermediates. The charging process aimed at lithium regeneration faces high polarization, and a cycling procedure involving low-current charging was proposed to improve cycling. This study integrates insights from three distinct research directions to leverage their respective advantages and scientific insights. The Li-N2 battery emerges as a highly advantageous strategy for ammonia synthesis due to the progressiveness of lithium anode.
Collapse
Affiliation(s)
- Xingyu Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Zhiyang Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Houkang Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Yongxiang Liang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Hui Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| |
Collapse
|
3
|
Li S, Zhou Y, Fu X, Pedersen JB, Saccoccio M, Andersen SZ, Enemark-Rasmussen K, Kempen PJ, Damsgaard CD, Xu A, Sažinas R, Mygind JBV, Deissler NH, Kibsgaard J, Vesborg PCK, Nørskov JK, Chorkendorff I. Long-term continuous ammonia electrosynthesis. Nature 2024; 629:92-97. [PMID: 38503346 DOI: 10.1038/s41586-024-07276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Ammonia is crucial as a fertilizer and in the chemical industry and is considered to be a carbon-free fuel1. Ammonia electrosynthesis from nitrogen under ambient conditions offers an attractive alternative to the Haber-Bosch process2,3, and lithium-mediated nitrogen reduction represents a promising approach to continuous-flow ammonia electrosynthesis, coupling nitrogen reduction with hydrogen oxidation4. However, tetrahydrofuran, which is commonly used as a solvent, impedes long-term ammonia production owing to polymerization and volatility problems. Here we show that a chain-ether-based electrolyte enables long-term continuous ammonia synthesis. We find that a chain-ether-based solvent exhibits non-polymerization properties and a high boiling point (162 °C) and forms a compact solid-electrolyte interphase layer on the gas diffusion electrode, facilitating ammonia release in the gas phase and ensuring electrolyte stability. We demonstrate 300 h of continuous operation in a flow electrolyser with a 25 cm2 electrode at 1 bar pressure and room temperature, and achieve a current-to-ammonia efficiency of 64 ± 1% with a gas-phase ammonia content of approximately 98%. Our results highlight the crucial role of the solvent in long-term continuous ammonia synthesis.
Collapse
Affiliation(s)
- Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Yuanyuan Zhou
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xianbiao Fu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob B Pedersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mattia Saccoccio
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Suzanne Z Andersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Paul J Kempen
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Danvad Damsgaard
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aoni Xu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rokas Sažinas
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Niklas H Deissler
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter C K Vesborg
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens K Nørskov
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Kani NC, Goyal I, Gauthier JA, Shields W, Shields M, Singh MR. Pathway toward Scalable Energy-Efficient Li-Mediated Ammonia Synthesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16203-16212. [PMID: 38506506 DOI: 10.1021/acsami.3c19499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Lithium-mediated ammonia synthesis (LiMAS) is an emerging electrochemical method for NH3 production, featuring a meticulous three-step process involving Li+ electrodeposition, Li nitridation, and Li3N protolysis. The essence lies in the electrodeposition of Li+, a critical phase demanding current oscillations to fortify the solid-electrolyte interface (SEI) and ensure voltage stability. This distinctive operational cadence orchestrates Li nitridation and Li3N protolysis, profoundly influencing the NH3 selectivity. Increasing N2 pressure enhances the NH3 faradaic efficiency (FE) up to 20 bar, beyond which proton availability controls selectivity between Li nitridation and Li3N protolysis. The proton donor, typically alcohols, is a key factor, with 1-butanol observed to yield the highest NH3 FE. Counterion in the Li salt is also observed to be significant, with larger anions (e.g., exemplified by BF4-) improving SEI stability, directly impacting LiMAS efficacy. Notably, we report a peak NH3 FE of ∼70% and an NH3 current density of ∼-100 mA/cm2 via a delicate balance of process conditions, encompassing N2 pressure, proton donor, Li salt, and their respective concentrations. In contrast to the recent literature, we find that the theoretical maximum energy efficiency of LiMAS hinges significantly on the proton source, with LiMAS utilizing H2O calculated to have a maximum achievable energy efficiency of 27.8%. Despite inherent challenges, a technoeconomic analysis suggests high-pressure LiMAS to be more feasible than both ambient LiMAS and a modified green Haber-Bosch process. Our analysis finds that, at a 100 mA/cm2 NH3 current density and a 6 V cell voltage, LiMAS delivers green NH3 at an all-inclusive cost of $456 per ton, significantly lower than conventional cost barriers. Our economic analysis underscores high-pressure LiMAS as a potentially transformative technology that may revolutionize large-scale NH3 production, paving the way for a sustainable future.
Collapse
Affiliation(s)
- Nishithan C Kani
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Ishita Goyal
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Joseph A Gauthier
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Windom Shields
- General Ammonia Company LLC, 3155 Lakeshore Avenue, Maple Plain, Minnesota 55359, United States
| | - Mitchell Shields
- General Ammonia Company LLC, 3155 Lakeshore Avenue, Maple Plain, Minnesota 55359, United States
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
5
|
Fu X, Xu A, Pedersen JB, Li S, Sažinas R, Zhou Y, Andersen SZ, Saccoccio M, Deissler NH, Mygind JBV, Kibsgaard J, Vesborg PCK, Nørskov JK, Chorkendorff I. Phenol as proton shuttle and buffer for lithium-mediated ammonia electrosynthesis. Nat Commun 2024; 15:2417. [PMID: 38499554 PMCID: PMC10948763 DOI: 10.1038/s41467-024-46803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
Ammonia is a crucial component in the production of fertilizers and various nitrogen-based compounds. Now, the lithium-mediated nitrogen reduction reaction (Li-NRR) has emerged as a promising approach for ammonia synthesis at ambient conditions. The proton shuttle plays a critical role in the proton transfer process during Li-NRR. However, the structure-activity relationship and design principles for effective proton shuttles have not yet been established in practical Li-NRR systems. Here, we propose a general procedure for verifying a true proton shuttle and established design principles for effective proton shuttles. We systematically evaluate several classes of proton shuttles in a continuous-flow reactor with hydrogen oxidation at the anode. Among the tested proton shuttles, phenol exhibits the highest Faradaic efficiency of 72 ± 3% towards ammonia, surpassing that of ethanol, which has been commonly used so far. Experimental investigations including operando isotope-labelled mass spectrometry proved the proton-shuttling capability of phenol. Further mass transport modeling sheds light on the mechanism.
Collapse
Affiliation(s)
- Xianbiao Fu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aoni Xu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob B Pedersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rokas Sažinas
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Yuanyuan Zhou
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Suzanne Z Andersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mattia Saccoccio
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Niklas H Deissler
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter C K Vesborg
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens K Nørskov
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
6
|
Jin H, Kim SS, Venkateshalu S, Lee J, Lee K, Jin K. Electrochemical Nitrogen Fixation for Green Ammonia: Recent Progress and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300951. [PMID: 37289104 PMCID: PMC10427382 DOI: 10.1002/advs.202300951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Indexed: 06/09/2023]
Abstract
Ammonia, a key feedstock used in various industries, has been considered a sustainable fuel and energy storage option. However, NH3 production via the conventional Haber-Bosch process is costly, energy-intensive, and significantly contributing to a massive carbon footprint. An electrochemical synthetic pathway for nitrogen fixation has recently gained considerable attention as NH3 can be produced through a green process without generating harmful pollutants. This review discusses the recent progress and challenges associated with the two relevant electrochemical pathways: direct and indirect nitrogen reduction reactions. The detailed mechanisms of these reactions and highlight the recent efforts to improve the catalytic performances are discussed. Finally, various promising research strategies and remaining tasks are presented to highlight future opportunities in the electrochemical nitrogen reduction reaction.
Collapse
Affiliation(s)
- Haneul Jin
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul04620Republic of Korea
| | - Suyeon S. Kim
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Sandhya Venkateshalu
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Jeseok Lee
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Kyoungsuk Jin
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
7
|
Fu X, Pedersen JB, Zhou Y, Saccoccio M, Li S, Sažinas R, Li K, Andersen SZ, Xu A, Deissler NH, Mygind JBV, Wei C, Kibsgaard J, Vesborg PCK, Nørskov JK, Chorkendorff I. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 2023; 379:707-712. [PMID: 36795804 DOI: 10.1126/science.adf4403] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Ammonia is a critical component in fertilizers, pharmaceuticals, and fine chemicals and is an ideal, carbon-free fuel. Recently, lithium-mediated nitrogen reduction has proven to be a promising route for electrochemical ammonia synthesis at ambient conditions. In this work, we report a continuous-flow electrolyzer equipped with 25-square centimeter-effective area gas diffusion electrodes wherein nitrogen reduction is coupled with hydrogen oxidation. We show that the classical catalyst platinum is not stable for hydrogen oxidation in the organic electrolyte, but a platinum-gold alloy lowers the anode potential and avoids the decremental decomposition of the organic electrolyte. At optimal operating conditions, we achieve, at 1 bar, a faradaic efficiency for ammonia production of up to 61 ± 1% and an energy efficiency of 13 ± 1% at a current density of -6 milliamperes per square centimeter.
Collapse
Affiliation(s)
- Xianbiao Fu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob B Pedersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Yuanyuan Zhou
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mattia Saccoccio
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rokas Sažinas
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katja Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Suzanne Z Andersen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aoni Xu
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Niklas H Deissler
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Chao Wei
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jakob Kibsgaard
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter C K Vesborg
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jens K Nørskov
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Spry M, Westhead O, Tort R, Moss B, Katayama Y, Titirici MM, Stephens IEL, Bagger A. Water Increases the Faradaic Selectivity of Li-Mediated Nitrogen Reduction. ACS ENERGY LETTERS 2023; 8:1230-1235. [PMID: 36816776 PMCID: PMC9926485 DOI: 10.1021/acsenergylett.2c02792] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The lithium-mediated system catalyzes nitrogen to ammonia under ambient conditions. Herein we discover that trace amount of water as an electrolyte additive-in contrast to prior reports from the literature-can effect a dramatic improvement in the Faradaic selectivity of N2 reduction to NH3. We report that an optimal water concentration of 35.9 mM and LiClO4 salt concentration of 0.8 M allows a Faradaic efficiency up to 27.9 ± 2.5% at ambient pressure. We attribute the increase in Faradaic efficiency to the incorporation of Li2O in the solid electrolyte interphase, as suggested by our X-ray photoelectron spectroscopy measurements. Our results highlight the extreme sensitivity of lithium-mediated N2 reduction to small changes in the experimental conditions.
Collapse
Affiliation(s)
- Matthew Spry
- Department
of Materials, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2AZ, U.K.
| | - Olivia Westhead
- Department
of Materials, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2AZ, U.K.
| | - Romain Tort
- Department
of Chemical Engineering, Imperial College
London, Imperial College Rd, South Kensington, London, SW7 2AZ, U.K.
| | - Benjamin Moss
- Department
of Materials, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2AZ, U.K.
| | - Yu Katayama
- SANKEN
(Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Maria-Magdalena Titirici
- Department
of Chemical Engineering, Imperial College
London, Imperial College Rd, South Kensington, London, SW7 2AZ, U.K.
| | - Ifan E. L. Stephens
- Department
of Materials, Imperial College London, Prince Consort Road, South Kensington, London, SW7 2AZ, U.K.
| | - Alexander Bagger
- Department
of Chemical Engineering, Imperial College
London, Imperial College Rd, South Kensington, London, SW7 2AZ, U.K.
| |
Collapse
|