1
|
Panchagnula S, Kamer J, Candian A, Hrodmarsson HR, Linnartz H, Bouwman J, Tielens AGGM. Laser-induced fragmentation of coronene cations. Phys Chem Chem Phys 2024; 26:18557-18570. [PMID: 38884178 DOI: 10.1039/d4cp01301h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Polycyclic aromatic hydrocarbons are an important component of the interstellar medium of galaxies and photochemistry plays a key role in the evolution of these species in space. Here, we explore the photofragmentation behaviour of the coronene cation (C24H12˙+) using time-of-flight mass spectrometry. The experiments show photodissociation fragmentation channels including the formation of bare carbon clusters (Cn˙+) and hydrocarbon chains (CnHx+). The mass spectrum of coronene is dominated by peaks from C11˙+ and C7H+. Density functional theory was used to calculate relative energies, potential dissociation pathways, and possible structures for relevant species. We identify 6-6 → 5-7 ring isomerisation as a key step in the formation of both the bare carbon clusters and the hydrocarbon chains observed in this study. We present the dissociation mechanism outlined here as a potential formation route for C60 and other astrochemically relevant species.
Collapse
Affiliation(s)
- Sanjana Panchagnula
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands.
- Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Jerry Kamer
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands.
| | - Alessandra Candian
- Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Helgi R Hrodmarsson
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands.
| | - Harold Linnartz
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands.
| | - Jordy Bouwman
- Laboratory for Astrophysics, Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands.
| | - Alexander G G M Tielens
- Leiden Observatory, Leiden University, 2300 RA, Leiden, The Netherlands
- Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA
| |
Collapse
|
2
|
Ferrari P, Lemmens AK, Redlich B. Infrared bands of neutral gas-phase carbon clusters in a broad spectral range. Phys Chem Chem Phys 2024; 26:12324-12330. [PMID: 38619080 DOI: 10.1039/d3cp05756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The identification of species in the interstellar medium requires precise and molecule-specific spectroscopic information in the laboratory framework, in broad spectral ranges and under conditions relevant to interstellar environments. In this work, we measure the gas-phase infrared spectra of neutral carbon clusters, CN (N = 6-11), in a molecular beam. The CN distribution is formed by photofragmentation of C60 molecules, concurrently showing a top-down formation mechanism. A broad spectral range in the infrared between 500-3200 cm-1 (20-3.125 μm) is investigated. We observe strong bands between 5 and 6 μm, in conjunction with novel features in the 3 μm region. Density functional theory calculations reveal that these short wavelength modes correspond to combination bands with significant infrared intensity. Moreover, we identify the N ≤ 10 clusters as linear, while C11 adopts a ring configuration, placing the linear-to-ring transition at N = 11 under our molecular beam conditions. The linearity of C10 is discussed based on the formation pathway from larger clusters in energetic conditions. Given the vast and very precise infrared information already been released from the James Webb Space Telescope mission, this infrared spectroscopic data set in conjunction with information on formation mechanisms is of major relevance for identifying neutral carbon clusters in astronomical environments.
Collapse
Affiliation(s)
- Piero Ferrari
- Radboud University, FELIX Laboratory, Institute for Molecules and Materials, 6525 ED Nijmegen, the Netherlands.
| | - Alexander K Lemmens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Britta Redlich
- Radboud University, FELIX Laboratory, Institute for Molecules and Materials, 6525 ED Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Ito Y, Kominato M, Nakashima Y, Ohshimo K, Misaizu F. Fragment imaging in the infrared photodissociation of the Ar-tagged protonated water clusters H 3O +-Ar and H +(H 2O) 2-Ar. Phys Chem Chem Phys 2023; 25:9404-9412. [PMID: 36928842 DOI: 10.1039/d3cp00469d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Infrared photodissociation of protonated water clusters with an Ar atom, namely H3O+-Ar and H+(H2O)2-Ar, was investigated by an imaging technique for mass-selected ions, to reveal the intra- and intermolecular vibrational dynamics. The presented system has the advantage of achieving fragment ion images with the cluster size- and mode-selective photoexcitation of each OH stretching vibration. Translational energy distributions of photofragments were obtained from the images upon the excitation of the bound (νb) and free (νf) OH stretching vibrations. The energy fractions in the translational motion were compared between νbI and νfI in H3O+-Ar or between νbII and νfII in H+(H2O)2-Ar, where the labels "I" and "II" represent H3O+-Ar and H+(H2O)2-Ar, respectively. In H3O+-Ar, the νfI excitation exhibited a smaller translational energy than νbI. This result can be explained by the higher vibrational energy of νfI, which enabled it to produce bending (ν4) excited H3O+ fragments that should be favored according to the energy-gap model. In contrast to H3O+-Ar, the νbII excitation of an Ar-tagged H2O subunit and the νfII excitation of an untagged H2O subunit resulted in very similar translational energy distributions in H+(H2O)2-Ar. The similar energy fractions independent of the excited H2O subunits suggested that the νbII and νfII excited states relaxed into a common intermediate state, in which the vibrational energy was delocalized within the H2O-H+-H2O moiety. However, the translational energy distributions for H+(H2O)2-Ar did not agree with a statistical dissociation model, which implied another aspect of the process, that is, Ar dissociation via incomplete energy randomization in the whole H+(H2O)2-Ar cluster.
Collapse
Affiliation(s)
- Yuri Ito
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Mizuhiro Kominato
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Yuji Nakashima
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Keijiro Ohshimo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
4
|
Marlton SJP, Buntine JT, Watkins P, Liu C, Jacovella U, Carrascosa E, Bull JN, Bieske EJ. Probing Colossal Carbon Rings. J Phys Chem A 2023; 127:1168-1178. [PMID: 36703560 DOI: 10.1021/acs.jpca.2c07068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbon aggregates containing between 10 and 30 atoms preferentially arrange themselves as planar rings. To learn more about this exotic allotrope of carbon, electronic spectra are measured for even cyclo[n]carbon radical cations (C14+-C36+) using two-color photodissociation action spectroscopy. To eliminate spectral contributions from other isomers, the target cyclo[n]carbon radical cations are isomer-selected using a drift tube ion mobility spectrometer prior to spectroscopic interrogation. The electronic spectra exhibit sharp transitions spanning the visible and near-infrared spectral regions with the main absorption band shifting progressively to longer wavelength by ≈100 nm for every additional two carbon atoms. This behavior is rationalized with a Hückel theory model describing the energies of the in-plane and out-of-plane π orbitals. Photoexcitation of smaller carbon rings leads preferentially to neutral C3 and C5 loss, whereas rings larger than C24+ tend to also decompose into two smaller rings, which, when possible, have aromatic stability. Generally, the observed charged photofragments correspond to low energy fragment pairs, as predicted by density functional theory calculations (CAM-B3LYP-D3(BJ)/cc-pVDZ). Using action spectroscopy it is confirmed that C14+ and C18+ photofragments from C28+ rings have cyclic structures.
Collapse
Affiliation(s)
- Samuel J P Marlton
- School of Chemistry, The University of Melbourne, Victoria, Australia3010
| | - Jack T Buntine
- School of Chemistry, The University of Melbourne, Victoria, Australia3010
| | - Patrick Watkins
- School of Chemistry, The University of Melbourne, Victoria, Australia3010
| | - Chang Liu
- School of Chemistry, The University of Melbourne, Victoria, Australia3010
| | - Ugo Jacovella
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405Orsay, France
| | - Eduardo Carrascosa
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstrasse 4, 28359Bremen, Germany
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | - Evan J Bieske
- School of Chemistry, The University of Melbourne, Victoria, Australia3010
| |
Collapse
|