1
|
Fuxiang S, Qian C, Rui Y, Naiyu S, Bin L. A Novel High-Strength Dental Resin Composite Based on BaSi 2O 2N 2 for Caries Restoration. ACS Biomater Sci Eng 2025; 11:2106-2114. [PMID: 40151137 DOI: 10.1021/acsbiomaterials.4c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Dental resin composite (DRC) is the most widely used restorative material for caries filling treatments. However, DRC has limitations, including incomplete curing and suboptimal mechanical properties, which restrict its clinical application. In this study, we combined the mechanoluminescent material BaSi2O2N2:Eu2+ (BSON) with DRC to create a novel DRC (BD) capable of emitting blue light under occlusal force. This study explored a resin composite with enhanced curing efficiency and improved mechanical properties. Characterization of the mechanical properties demonstrated that, as the BSON doping ratio increased (2, 4, 8, 16, and 32 wt %), the compressive strength, flexural strength, and surface hardness of BD initially increased and then decreased. The composite doped with 4 wt % BSON (BD4) exhibited the best mechanical properties. Compared to DRC, BD4 showed an 11% increase in compressive strength (211.9 ± 13.9 MPa), a 36% increase in flexural strength (71.9 ± 8.4 MPa), and a 7% increase in surface hardness (111.0 ± 6.4 HV). Based on these findings, BD4 was selected for further experiments. The study of luminescent properties revealed that the mechanoluminescent wavelength of BD4 (470-720 nm) partially overlapped with the wavelength range of the light-curing unit (420-490 nm). Additionally, after cyclic loading, BD4's compressive strength and degree of conversion (DC) improved. After applying a cyclic load of 300 N for 240 s, BD4's compressive strength increased by 70% (142.2 ± 1.2 MPa), and the DC increased by 8% (74.4%). Moreover, biocompatibility evaluations showed that the cell survival rate of L929 fibroblast cells exceeded 90%. Thus, we developed an effective strategy to enhance DRC by incorporating BSON, resulting in a resin composite with superior mechanical properties, enhanced curing efficiency, and favorable biocompatibility, offering a promising new solution for caries restorations.
Collapse
Affiliation(s)
- Song Fuxiang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chen Qian
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yang Rui
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shi Naiyu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Liu Bin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Munthasir ATM, Rani P, Dhanalakshmi P, Geremia S, Hickey N, Thilagar P. Naphthalimide and Carbazole Based Mechanochromic Molecular Dyads and Triads for Selective Lysosome Imaging. Chem Asian J 2025; 20:e202401386. [PMID: 39817362 DOI: 10.1002/asia.202401386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states. In the solid-state, the PL of these probes shows a bathochromic shift, which can be attributed to intermolecular interactions. In a water-rich medium, Probe 1, with a single NPI moiety, shows aggregation-caused quenching (ACQ) but retains a moderate quantum yield of 13.7 % (Φsoln=61.4 %). On the other hand, probe 2, with two NPI units, showed aggregation-induced enhanced emission AIEE, where the PLQY is increased nearly 4 times (Φsoln=3.5 %, Φagg=12.8 %). In-vitro cell studies revealed that these probes are non-toxic and effectively stain cells in green and red channels. Notably, Probe 1 demonstrated excellent cellular uptake and selectivity for lysosome, with a Pearson overlap coefficient of 0.91.
Collapse
Affiliation(s)
| | - Poonam Rani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India -, 560012
| | - Pandi Dhanalakshmi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India -, 560012
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, 34127, Trieste, Italy
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India -, 560012
| |
Collapse
|
3
|
Zheng X, Wang G, Liu L, Li X, Xie P, Fan Y, Cao Z, Niu C, Tian D, Xie L. Hydrogen Bonding-Induced Multicolor and Thermochromic Emissions of Triphenylamines. Chemistry 2025:e202500643. [PMID: 40111147 DOI: 10.1002/chem.202500643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 03/20/2025] [Indexed: 03/22/2025]
Abstract
The fluorescence tuning of stimuli-responsive materials is crucial but challenging. The deep understanding of thermal induced fluorescence change, however, has rarely been conducted. Herein, the thermochromic emission of a triphenylamine (TPA) derivative (1), with one acetyl and two 1-hydroxy-1-methylethyl units on each o-phenyl group around the nitrogen atom, has been investigated. Upon heating, the bright blue-emitting solid 1 turns to a strong green-emitting liquid. Moreover, 1 is green emissive in ethanol but blue emissive with high absolute quantum yields in dimethyl sulfoxide (DMSO). Another TPA derivative (2) is green emitting. X-ray crystallography studies reveal that the strong solid-state fluorescence arises from a rigid pyramidal structure around central nitrogen of 1, due to the OH•••OH, OH•••O = C hydrogen bonding interactions. Comparatively, 2 has a planar configuration of three C─N bonds around central nitrogen atom. This work will provide a new route for constructing multiemission materials using unimolecular platforms.
Collapse
Affiliation(s)
- Xin Zheng
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Gang Wang
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Lijie Liu
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Xiaochuan Li
- Collaborative Innovation Censer of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Puhui Xie
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Yongchao Fan
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Zhanqi Cao
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Caoyuan Niu
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Dongjie Tian
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Lixia Xie
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| |
Collapse
|
4
|
Zhao H, Fan B, Hu S, Liu XL, Xue P. Recent Progress of Mechanofluorochromism and Mechanoluminescence for Phenothiazine Derivatives and Analogues. Chemistry 2025; 31:e202404195. [PMID: 39853789 DOI: 10.1002/chem.202404195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Mechanofluorochromism (MFC) and mechanoluminescence (ML) materials have garnered significant attention from researchers due to their potential applications in anti-counterfeiting, optical recording, photodynamic therapy, bioimaging, stress sensing, display technology, and ink-free printing paper. Among the various building blocks utilized in these materials, phenothiazine (PTZ) has emerged as a widely employed fundamental component owing to its distinctive electronic and optical properties as well as its facile modification capabilities. Summarizing the recent progress of PTZ derivatives and analogues in this field holds practical significance. In this review article, we classify over one hundred compounds into a few classes based on the positions of substituents and provide detailed descriptions of their contributions to MFC and ML research respectively. This comprehensive review aims to offer theoretical insights and practical examples for researchers engaged in designing and developing new phenothiazine functional materials while serving as a bridge for further exploration of MFC or ML studies.
Collapse
Affiliation(s)
- He Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China
| | - Baiyang Fan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China
| | - Siwen Hu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China
| | - Xing Liang Liu
- School of Chemical Engineering, Qinghai University, No. 251, Ningda Road, Xining, 810016, P. R. China
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China
| |
Collapse
|
5
|
Park S, Byun J, Kim HJ, Cho BK. Room-Temperature Reversible Control of Fluorescently Distinct Polymorphs Using Pressure and E-Field: Writing and Erasing Information without Thermal Treatment. J Am Chem Soc 2025; 147:2309-2314. [PMID: 39772479 DOI: 10.1021/jacs.4c16712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This paper presents the reversible transformation between two polymorphs of a hexacatenar liquid crystal (1) with distinct fluorescence colors at room temperature (RT). This method utilizes mechanical pressure (mechanochromism) and an electric field (E-field-chromism). The molecule (1), designed with a pyrene core and 1,2,3-triazole linkers, exhibits a blue-emissive crystalline (CRY) polymorph (1-B) and a green-emissive liquid crystalline (LC) polymorph (1-G) at RT, depending on the cooling rate from the liquid phase. The metastable 1-G is stabilized by hydrogen bonding (H-bonding) between 1,2,3-triazole linkers, forming a helical columnar structure. Mechanical pressure converts thermodynamically stable 1-B to 1-G, while the application of an alternating current (AC) E-field to 1-G transforms it back to 1-B. Notably, this study reports the first instance of an E-field-induced polymorphic transformation. Using mechanical pressure and E-field application at RT, patterns were successfully recorded and erased on substrates, demonstrating potential applications in data storage, anticounterfeiting, and sensor technologies.
Collapse
Affiliation(s)
- Seongwon Park
- Department of Chemistry, Dankook University, 119, Dandae-ro, Chungnam 448-701, Korea
| | - Jaeduk Byun
- Department of Physics, Dankook University, 119, Dandae-ro, Chungnam 448-701, Korea
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 501-759, Korea
| | - Byoung-Ki Cho
- Department of Chemistry, Dankook University, 119, Dandae-ro, Chungnam 448-701, Korea
| |
Collapse
|
6
|
Chang K, Gu J, Yuan L, Guo J, Wu X, Fan Y, Liao Q, Ye G, Li Q, Li Z. Achieving Ultrasound-Excited Emission with Organic Mechanoluminescent Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407875. [PMID: 39049679 DOI: 10.1002/adma.202407875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Indexed: 07/27/2024]
Abstract
Unlike traditional photoluminescence (PL), mechanoluminescence (ML) achieved under mechanical excitation demonstrates unique characteristics such as high penetrability, spatial resolution, and signal-to-background ratio (SBR) for bioimaging applications. However, bioimaging with organic mechanoluminescent materials remains challenging because of the shallow penetration depth of ML with short emission wavelengths and the absence of a suitable mechanical force to generate ML in vivo. To resolve these issues, the present paper reports the achievement of ultrasound (US)-excited fluorescence and phosphorescence from purely organic luminogens for the first time with emission wavelengths extending to the red/NIR region, with the penetrability of the US-excited emission being considerably higher than that of PL. Consequently, US-excited subcutaneous phosphorescence imaging can be achieved using a mechanoluminescent-luminogen-based capsule device with a quantified intensity of 9.15 ± 1.32 × 104 p s-1 cm-2 sr-1 and an SBR of 24. Moreover, the US-excited emission can be adequately tuned using the packing modes of the conjugated skeletons, dipole orientation of mechanoluminescent luminogens, and strength and direction of intermolecular interactions. Overall, this study innovatively expands the kind of excitation sources and the emission wavelengths of organic mechanoluminescent materials, paving the way for practical biological applications based on US-excited emission.
Collapse
Affiliation(s)
- Kai Chang
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Juqing Gu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Likai Yuan
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Jianfeng Guo
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xiangxi Wu
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yuanyuan Fan
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Guigui Ye
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
7
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Baranov O, Bazaka K, Belmonte T, Riccardi C, Roman HE, Mohandas M, Xu S, Cvelbar U, Levchenko I. Recent innovations in the technology and applications of low-dimensional CuO nanostructures for sensing, energy and catalysis. NANOSCALE HORIZONS 2023; 8:568-602. [PMID: 36928662 DOI: 10.1039/d2nh00546h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Low-dimensional copper oxide nanostructures are very promising building blocks for various functional materials targeting high-demanded applications, including energy harvesting and transformation systems, sensing and catalysis. Featuring a very high surface-to-volume ratio and high chemical reactivity, these materials have attracted wide interest from researchers. Currently, extensive research on the fabrication and applications of copper oxide nanostructures ensures the fast progression of this technology. In this article we briefly outline some of the most recent, mostly within the past two years, innovations in well-established fabrication technologies, including oxygen plasma-based methods, self-assembly and electric-field assisted growth, electrospinning and thermal oxidation approaches. Recent progress in several key types of leading-edge applications of CuO nanostructures, mostly for energy, sensing and catalysis, is also reviewed. Besides, we briefly outline and stress novel insights into the effect of various process parameters on the growth of low-dimensional copper oxide nanostructures, such as the heating rate, oxygen flow, and roughness of the substrates. These insights play a key role in establishing links between the structure, properties and performance of the nanomaterials, as well as finding the cost-and-benefit balance for techniques that are capable of fabricating low-dimensional CuO with the desired properties and facilitating their integration into more intricate material architectures and devices without the loss of original properties and function.
Collapse
Affiliation(s)
- Oleg Baranov
- Department of Theoretical Mechanics, Engineering and Robomechanical Systems, National Aerospace University, Kharkiv 61070, Ukraine.
- Department of Gaseous Electronics, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Kateryna Bazaka
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | | | - Claudia Riccardi
- Dipartimento di Fisica "Giuseppe Occhialini", Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I20126 Milan, Italy
| | - H Eduardo Roman
- Dipartimento di Fisica "Giuseppe Occhialini", Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I20126 Milan, Italy
| | - Mandhakini Mohandas
- Center for Nanoscience and Technology, Anna University, Chennai, 600 025, India
| | - Shuyan Xu
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore.
| | - Uroš Cvelbar
- Department of Gaseous Electronics, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore.
| |
Collapse
|
9
|
Sheokand M, Alsaleh AZ, D'Souza F, Misra R. Excitation Wavelength-Dependent Charge Stabilization in Highly Interacting Phenothiazine Sulfone-Derived Donor-Acceptor Constructs. J Phys Chem B 2023; 127:2761-2773. [PMID: 36938962 DOI: 10.1021/acs.jpcb.2c08472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Prolonging the lifetime of charge-separated states (CSS) is of paramount importance in artificial photosynthetic donor-acceptor (DA) constructs to build the next generation of light-energy-harvesting devices. This becomes especially important when the DA constructs are closely spaced and highly interacting. In the present study, we demonstrate extending the lifetime of the CSS in highly interacting DA constructs by making use of the triplet excited state of the electron donor and with the help of excitation wavelength selectivity. To demonstrate this, π-conjugated phenothiazine sulfone-based push-pull systems, PTS2-PTS6 have been newly designed and synthesized via the Pd-catalyzed Sonogashira cross-coupling followed by [2 + 2] cycloaddition-retroelectrocyclization reactions. Modulation of the spectral and photophysical properties of phenothiazine sulfones (PTZSO2) and terminal phenothiazines (PTZ) was possible by incorporating powerful electron acceptors, 1,1,4,4-tetracyanobutadiene (TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD (exTCBD). The quadrupolar PTS2 displayed solvatochromism, aggregation-induced emission, and mechanochromic behaviors. From the energy calculations, excitation wavelength-dependent charge stabilization was envisioned in PTS2-PTS6, and the subsequent pump-probe spectroscopic studies revealed charge stabilization when the systems were excited at the locally excited peak positions, while such effect was minimal when the samples were excited at wavelengths corresponding to the CT transitions. This work reveals the impact of wavelength selectivity to induce charge separation from the triplet excited state in ultimately prolonging the lifetime of CCS in highly interacting push-pull systems.
Collapse
Affiliation(s)
- Manju Sheokand
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| |
Collapse
|
10
|
Lei Y, Dai W, Li G, Zhang Y, Huang X, Cai Z, Dong Y. Stimulus-Responsive Organic Phosphorescence Materials Based on Small Molecular Host-Guest Doped Systems. J Phys Chem Lett 2023; 14:1794-1807. [PMID: 36763033 DOI: 10.1021/acs.jpclett.2c03914] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Small molecular host-guest doped materials exhibit superiority toward high-efficiency room-temperature phosphorescence (RTP) materials due to their structural design diversity and ease of preparation. Dynamic RTP materials display excellent characteristics, such as good reversibility, quick response, and tunable luminescence ability, making them applicable to various cutting-edge technologies. Herein, we summarize the advances in host-guest doped dynamic RTP materials that respond to external and internal stimuli and present some insights into the molecular design strategies and underlying mechanisms. Subsequently, specific viewpoints are described regarding this promising field for the development of dynamic RTP materials. This Perspective is highly beneficial for future intelligent applications of dynamic RTP systems.
Collapse
Affiliation(s)
- Yunxiang Lei
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenbo Dai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Gengchen Li
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Yongfeng Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhengxu Cai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Yuping Dong
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
| |
Collapse
|
11
|
Wang X, Wu X, Wang T, Wu Y, Shu H, Cheng Z, Zhao L, Tian H, Tong H, Wang L. A high-contrast polymorphic difluoroboron luminogen with efficient RTP and TADF emissions. Chem Commun (Camb) 2023; 59:1377-1380. [PMID: 36649148 DOI: 10.1039/d2cc05849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A simple N,S-chelated four-coordinated difluoroboron-based emitter is reported with three polymorphs, which emit high contrast green (G), yellow (Y) and red (R) light. Interestingly, the G and R-Crystals show different thermally activated delayed fluorescence (TADF) at 530 nm and 630 nm with a remarkable emission spectral shift of up to 100 nm, while the Y-Crystal exhibits room temperature phosphorescence (RTP) at around 570 nm with a high solid-state quantum yield of 77%. Single crystal analysis and theoretical calculations reveal that different molecular conformations and packing modes lead to distinct triplet exciton conversion channels.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaofu Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Tong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuliang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Haiyang Shu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiqiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hui Tong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
12
|
Gu J, Li Z, Li Q. From single molecule to molecular aggregation science. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Huang Z, Chen B, Ren B, Tu D, Wang Z, Wang C, Zheng Y, Li X, Wang D, Ren Z, Qu S, Chen Z, Xu C, Fu Y, Peng D. Smart Mechanoluminescent Phosphors: A Review of Strontium-Aluminate-Based Materials, Properties, and Their Advanced Application Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204925. [PMID: 36372543 PMCID: PMC9875687 DOI: 10.1002/advs.202204925] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/30/2022] [Indexed: 05/19/2023]
Abstract
Mechanoluminescence, a smart luminescence phenomenon in which light energy is directly produced by a mechanical force, has recently received significant attention because of its important applications in fields such as visible strain sensing and structural health monitoring. Up to present, hundreds of inorganic and organic mechanoluminescent smart materials have been discovered and studied. Among them, strontium-aluminate-based materials are an important class of inorganic mechanoluminescent materials for fundamental research and practical applications attributed to their extremely low force/pressure threshold of mechanoluminescence, efficient photoluminescence, persistent afterglow, and a relatively low synthesis cost. This paper presents a systematic and comprehensive review of strontium-aluminate-based luminescent materials' mechanoluminescence phenomena, mechanisms, material synthesis techniques, and related applications. Besides of summarizing the early and the latest research on this material system, an outlook is provided on its environmental, energy issue and future applications in smart wearable devices, advanced energy-saving lighting and displays.
Collapse
Affiliation(s)
- Zefeng Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Bing Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Biyun Ren
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Dong Tu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of EducationSchool of Physics and TechnologyWuhan UniversityWuhan430072China
| | - Zhaofeng Wang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
| | - Chunfeng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yuantian Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xu Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Dong Wang
- College of Physical EducationShenzhen UniversityShenzhen518060China
| | - Zhanbing Ren
- College of Physical EducationShenzhen UniversityShenzhen518060China
| | - Sicen Qu
- College of Physical EducationShenzhen UniversityShenzhen518060China
| | - Zhuyang Chen
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhen518055China
| | - Chen Xu
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhen518055China
| | - Yu Fu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
14
|
Karimata A, Fayzullin RR, Khusnutdinova JR. Versatile Method of Generating Triboluminescence in Polymer Films Blended with Common Luminophores. ACS Macro Lett 2022; 11:1028-1033. [PMID: 35905142 DOI: 10.1021/acsmacrolett.2c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report a versatile method for the preparation of triboluminescent polymer films by physical blending with common luminophores. This method does not require the presence of a crystalline phase or the use of materials known to be triboluminescent. Emission is generated in response to friction of the polymer surface via triboelectrification, either by rubbing directly or through an inert coating layer, even with low applied stress (<0.1 MPa). Our findings offer a convenient and practical method of preparation of triboluminescent, amorphous polymer films with easily tunable emission properties.
Collapse
Affiliation(s)
- Ayumu Karimata
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|