1
|
Guo J, Duan Y, Jia Y, Zhao Z, Gao X, Liu P, Li F, Chen H, Ye Y, Liu Y, Zhao M, Tang Z, Liu Y. Biomimetic chiral hydrogen-bonded organic-inorganic frameworks. Nat Commun 2024; 15:139. [PMID: 38167785 PMCID: PMC10762213 DOI: 10.1038/s41467-023-43700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Assembly ubiquitously occurs in nature and gives birth to numerous functional biomaterials and sophisticated organisms. In this work, chiral hydrogen-bonded organic-inorganic frameworks (HOIFs) are synthesized via biomimicking the self-assembly process from amino acids to proteins. Enjoying the homohelical configurations analogous to α-helix, the HOIFs exhibit remarkable chiroptical activity including the chiral fluorescence (glum = 1.7 × 10-3) that is untouched among the previously reported hydrogen-bonded frameworks. Benefitting from the dynamic feature of hydrogen bonding, HOIFs enable enantio-discrimination of chiral aliphatic substrates with imperceivable steric discrepancy based on fluorescent change. Moreover, the disassembled HOIFs after recognition applications are capable of being facilely regenerated and self-purified via aprotic solvent-induced reassembly, leading to at least three consecutive cycles without losing the enantioselectivity. The underlying mechanism of chirality bias is decoded by the experimental isothermal titration calorimetry together with theoretic simulation.
Collapse
Affiliation(s)
- Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China.
| | - Yulong Duan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China
| | - Yunling Jia
- School of Materials Science and Engineering, Tiangong University, 300387, Tianjin, P. R. China
| | - Zelong Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, P. R. China
| | - Pai Liu
- School of Materials Science and Engineering, Tiangong University, 300387, Tianjin, P. R. China
| | - Fangfang Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China
| | - Hongli Chen
- School of Materials Science and Engineering, Tiangong University, 300387, Tianjin, P. R. China
| | - Yutong Ye
- School of Materials Science and Engineering, Tiangong University, 300387, Tianjin, P. R. China
| | - Yujiao Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China
| | - Meiting Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, P. R. China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China.
| | - Yi Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China.
| |
Collapse
|
2
|
Maji S, Samanta J, Samanta K, Natarajan R. Emissive Click Cages. Chemistry 2023; 29:e202301985. [PMID: 37498735 DOI: 10.1002/chem.202301985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
This study reports the synthesis of cofacial organic cage molecules containing aggregation-induced emissive (AIE) luminogens (AIEgens) through four-fold Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reactions. The shorter AIEgen, tetraphenylethylene (TPE), afforded two orientational isomers (TPE-CC-1A and TPE-CC-1B). The longer AIEgen, tetrabiphenylethylene (TBPE), afforded a single isomer (TBPE-CC-2). The click reaction employed is irreversible, yet it yielded remarkable four-fold click products above 40 %. The phenyl rings around the ethylene core generate propeller-shaped chirality owing to their orientation, which influences the chirality of the resulting cages. The shorter cages are a mixture of PP/MM isomers, while the longer ones are a mixture of PM/MP isomers, as evidenced by their x-ray structures. The newly synthesized cage molecules are emissive even in dilute solutions (THF) and exhibit enhanced AIE upon the addition of water. The aggregated cage molecules in aqueous solution exhibit turn-off emission sensing of nitroaromatic explosives, with selectivity to picric acid in the 25-38 nanomolar detection range.
Collapse
Affiliation(s)
- Suman Maji
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Samanta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishanu Samanta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|