1
|
Otterpohl F, Keefer D, Mukamel S, Thorwart M. Coherent Ultrafast Stimulated X-Ray Raman Spectroscopy of Dissipative Conical Intersections. PHYSICAL REVIEW LETTERS 2024; 133:098001. [PMID: 39270195 DOI: 10.1103/physrevlett.133.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/25/2024] [Indexed: 09/15/2024]
Abstract
The quantum coherent dynamics of a vibronic wave packet in a molecule passing through a conical intersection can be revealed using attosecond transient coherent Raman spectroscopy. In particular, the time evolution of the electronic coherence can be monitored in the presence of vibrational dynamics. So far, the technique has been investigated without including environmental quantum noise. Here, we employ the numerically exact hierarchy equation of motion approach to show that the transient coherent Raman signals are robust and accessible on times of up to a few hundred femtoseconds with respect to electonic and vibrational dephasing.
Collapse
|
2
|
Morshed O, Amin M, Cogan NMB, Koessler ER, Collison R, Tumiel TM, Girten W, Awan F, Mathis L, Huo P, Vamivakas AN, Odom TW, Krauss TD. Room-temperature strong coupling between CdSe nanoplatelets and a metal-DBR Fabry-Pérot cavity. J Chem Phys 2024; 161:014710. [PMID: 38953450 DOI: 10.1063/5.0210700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The generation of exciton-polaritons through strong light-matter interactions represents an emerging platform for exploring quantum phenomena. A significant challenge in colloidal nanocrystal-based polaritonic systems is the ability to operate at room temperature with high fidelity. Here, we demonstrate the generation of room-temperature exciton-polaritons through the coupling of CdSe nanoplatelets (NPLs) with a Fabry-Pérot optical cavity, leading to a Rabi splitting of 74.6 meV. Quantum-classical calculations accurately predict the complex dynamics between the many dark state excitons and the optically allowed polariton states, including the experimentally observed lower polariton photoluminescence emission, and the concentration of photoluminescence intensities at higher in-plane momenta as the cavity becomes more negatively detuned. The Rabi splitting measured at 5 K is similar to that at 300 K, validating the feasibility of the temperature-independent operation of this polaritonic system. Overall, these results show that CdSe NPLs are an excellent material to facilitate the development of room-temperature quantum technologies.
Collapse
Affiliation(s)
- Ovishek Morshed
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Mitesh Amin
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Nicole M B Cogan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Eric R Koessler
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Robert Collison
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Trevor M Tumiel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - William Girten
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Farwa Awan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Lele Mathis
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Pengfei Huo
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - A Nickolas Vamivakas
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Teri W Odom
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Todd D Krauss
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
3
|
Vu N, Mejia-Rodriguez D, Bauman NP, Panyala A, Mutlu E, Govind N, Foley JJ. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory. J Chem Theory Comput 2024; 20:1214-1227. [PMID: 38291561 PMCID: PMC10876286 DOI: 10.1021/acs.jctc.3c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024]
Abstract
Polariton chemistry has attracted great attention as a potential route to modify chemical structure, properties, and reactivity through strong interactions among molecular electronic, vibrational, or rovibrational degrees of freedom. A rigorous theoretical treatment of molecular polaritons requires the treatment of matter and photon degrees of freedom on equal quantum mechanical footing. In the limit of molecular electronic strong or ultrastrong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach we refer to as ab initio cavity quantum electrodynamics, where the photon degrees of freedom are treated at the level of cavity quantum electrodynamics. Here, we present an approach called Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction theory to provide ground- and excited-state polaritonic surfaces with a balanced description of strong correlation effects among electronic and photonic degrees of freedom. This method provides a platform for ab initio cavity quantum electrodynamics when both strong electron correlation and strong light-matter coupling are important and is an important step toward computational approaches that yield multiple polaritonic potential energy surfaces and couplings that can be leveraged for ab initio molecular dynamics simulations of polariton chemistry.
Collapse
Affiliation(s)
- Nam Vu
- Department
of Chemistry, University of North Carolina
Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| | - Daniel Mejia-Rodriguez
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nicholas P. Bauman
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ajay Panyala
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erdal Mutlu
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan J. Foley
- Department
of Chemistry, University of North Carolina
Charlotte, 9201 University City Blvd., Charlotte, North Carolina 28223, United States
| |
Collapse
|
4
|
Gustin I, Kim CW, McCamant DW, Franco I. Mapping electronic decoherence pathways in molecules. Proc Natl Acad Sci U S A 2023; 120:e2309987120. [PMID: 38015846 PMCID: PMC10710033 DOI: 10.1073/pnas.2309987120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
Establishing the fundamental chemical principles that govern molecular electronic quantum decoherence has remained an outstanding challenge. Fundamental questions such as how solvent and intramolecular vibrations or chemical functionalization contribute to the decoherence remain unanswered and are beyond the reach of state-of-the-art theoretical and experimental approaches. Here we address this challenge by developing a strategy to isolate electronic decoherence pathways for molecular chromophores immersed in condensed phase environments that enables elucidating how electronic quantum coherence is lost. For this, we first identify resonance Raman spectroscopy as a general experimental method to reconstruct molecular spectral densities with full chemical complexity at room temperature, in solvent, and for fluorescent and non-fluorescent molecules. We then show how to quantitatively capture the decoherence dynamics from the spectral density and identify decoherence pathways by decomposing the overall coherence loss into contributions due to individual molecular vibrations and solvent modes. We illustrate the utility of the strategy by analyzing the electronic decoherence pathways of the DNA base thymine in water. Its electronic coherences decay in [Formula: see text]30 fs. The early-time decoherence is determined by intramolecular vibrations while the overall decay by solvent. Chemical substitution of thymine modulates the decoherence with hydrogen-bond interactions of the thymine ring with water leading to the fastest decoherence. Increasing temperature leads to faster decoherence as it enhances the importance of solvent contributions but leaves the early-time decoherence dynamics intact. The developed strategy opens key opportunities to establish the connection between molecular structure and quantum decoherence as needed to develop chemical strategies to rationally modulate it.
Collapse
Affiliation(s)
- Ignacio Gustin
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Chang Woo Kim
- Department of Chemistry, Chonnam National University, Gwangju61186, South Korea
| | - David W. McCamant
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, NY14627
- Department of Physics, University of Rochester, Rochester, NY14627
| |
Collapse
|
5
|
Peng K, Rabani E. Polaritonic Bottleneck in Colloidal Quantum Dots. NANO LETTERS 2023; 23:10587-10593. [PMID: 37910671 DOI: 10.1021/acs.nanolett.3c03508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Controlling the relaxation dynamics of excitons is key to improving the efficiencies of semiconductor-based applications. Confined semiconductor nanocrystals (NCs) offer additional handles to control the properties of excitons, for example, by changing their size or shape, resulting in a mismatch between excitonic gaps and phonon frequencies. This has led to the hypothesis of a significant slowing-down of exciton relaxation in strongly confined NCs, but in practice due to increasing exciton-phonon coupling and rapid multiphonon relaxation channels, the exciton relaxation depends only weakly on the size or shape. Here, we focus on elucidating the nonradiative relaxation of excitons in NCs placed in an optical cavity. We find that multiphonon emission of carrier governs the decay, resulting in a polariton-induced phonon bottleneck with relaxation time scales that are slower by orders of magnitude compared to the cavity-free case, while the photon fraction plays a secondary role.
Collapse
Affiliation(s)
- Kaiyue Peng
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|