1
|
Dypvik Sødahl E, Carrete J, Madsen GKH, Berland K. Dynamical Disorder in the Mesophase Ferroelectric HdabcoClO 4: A Machine-Learned Force Field Study. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:484-494. [PMID: 39811432 PMCID: PMC11727073 DOI: 10.1021/acs.jpcc.4c06615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Hybrid molecular ferroelectrics with orientationally disordered mesophases offer significant promise as lead-free alternatives to traditional inorganic ferroelectrics owing to properties such as room temperature ferroelectricity, low-energy synthesis, malleability, and potential for multiaxial polarization. The ferroelectric molecular salt HdabcoClO4 is of particular interest due to its ultrafast ferroelectric room-temperature switching. However, so far, there is limited understanding of the nature of dynamical disorder arising in these compounds. Here, we employ the neural network NeuralIL to train a machine-learned force field (MLFF) with training data generated using density functional theory. The resulting MLFF-MD simulations exhibit phase transitions and thermal expansion in line with earlier reported experimental results, for both a low-temperature phase transition coinciding with the orientational disorder of ClO4 - and the onset of rotation of both Hdabco+ and ClO4 - in a high-temperature phase transition. We also find proton transfer even in the low-temperature phase, which increases with temperature and leads to associated proton disorder as well as the onset of disorder in the direction of the hydrogen-bonded chains.
Collapse
Affiliation(s)
- Elin Dypvik Sødahl
- Department
of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, N-1433 AS, Norway
| | - Jesús Carrete
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, ES-50009 Zaragoza, Spain
| | | | - Kristian Berland
- Department
of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, N-1433 AS, Norway
| |
Collapse
|
2
|
Caicedo-Dávila S, Cohen A, Motti SG, Isobe M, McCall KM, Grumet M, Kovalenko MV, Yaffe O, Herz LM, Fabini DH, Egger DA. Disentangling the effects of structure and lone-pair electrons in the lattice dynamics of halide perovskites. Nat Commun 2024; 15:4184. [PMID: 38760360 PMCID: PMC11101661 DOI: 10.1038/s41467-024-48581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
Halide perovskites show great optoelectronic performance, but their favorable properties are paired with unusually strong anharmonicity. It was proposed that this combination derives from the ns2 electron configuration of octahedral cations and associated pseudo-Jahn-Teller effect. We show that such cations are not a prerequisite for the strong anharmonicity and low-energy lattice dynamics encountered in these materials. We combine X-ray diffraction, infrared and Raman spectroscopies, and molecular dynamics to contrast the lattice dynamics of CsSrBr3 with those of CsPbBr3, two compounds that are structurally similar but with the former lacking ns2 cations with the propensity to form electron lone pairs. We exploit low-frequency diffusive Raman scattering, nominally symmetry-forbidden in the cubic phase, as a fingerprint of anharmonicity and reveal that low-frequency tilting occurs irrespective of octahedral cation electron configuration. This highlights the role of structure in perovskite lattice dynamics, providing design rules for the emerging class of soft perovskite semiconductors.
Collapse
Affiliation(s)
- Sebastián Caicedo-Dávila
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Adi Cohen
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia G Motti
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Masahiko Isobe
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Kyle M McCall
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, EMPA - Swiss National Laboratories for Materials and Technology, Dübendorf, Switzerland
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Manuel Grumet
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Maksym V Kovalenko
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, EMPA - Swiss National Laboratories for Materials and Technology, Dübendorf, Switzerland
| | - Omer Yaffe
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Laura M Herz
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Douglas H Fabini
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - David A Egger
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany.
| |
Collapse
|
3
|
Krajewska CJ, Kick M, Kaplan AEK, Berkinsky DB, Zhu H, Sverko T, Van Voorhis T, Bawendi MG. A-Site Cation Influence on the Structural and Optical Evolution of Ultrathin Lead Halide Perovskite Nanoplatelets. ACS NANO 2024; 18:8248-8258. [PMID: 38428021 DOI: 10.1021/acsnano.3c12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Imposing quantum confinement has the potential to significantly modulate both the structural and optical parameters of interest in many material systems. In this work, we investigate strongly confined ultrathin perovskite nanoplatelets APbBr3. We compare the all-inorganic and hybrid compositions with the A-sites cesium and formamidinium, respectively. Compared to each other and their bulk counterparts, the materials show significant differences in variable-temperature structural and optical evolution. We quantify and correlate structural asymmetry with the excitonic transition energy, spectral purity, and emission rate. Negative thermal expansion, structural and photoluminescence asymmetry, photoluminescence full width at half-maximum, and splitting between bright and dark excitonic levels are found to be reduced in the hybrid composition. This work provides composition- and structure-based mechanisms for engineering of the excitons in these materials.
Collapse
Affiliation(s)
- Chantalle J Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthias Kick
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David B Berkinsky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hua Zhu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tara Sverko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Bodnarchuk MI, Feld LG, Zhu C, Boehme SC, Bertolotti F, Avaro J, Aebli M, Mir SH, Masciocchi N, Erni R, Chakraborty S, Guagliardi A, Rainò G, Kovalenko MV. Colloidal Aziridinium Lead Bromide Quantum Dots. ACS NANO 2024. [PMID: 38320982 PMCID: PMC10883123 DOI: 10.1021/acsnano.3c11579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The compositional engineering of lead-halide perovskite nanocrystals (NCs) via the A-site cation represents a lever to fine-tune their structural and electronic properties. However, the presently available chemical space remains minimal since, thus far, only three A-site cations have been reported to favor the formation of stable lead-halide perovskite NCs, i.e., Cs+, formamidinium (FA), and methylammonium (MA). Inspired by recent reports on bulk single crystals with aziridinium (AZ) as the A-site cation, we present a facile colloidal synthesis of AZPbBr3 NCs with a narrow size distribution and size tunability down to 4 nm, producing quantum dots (QDs) in the regime of strong quantum confinement. NMR and Raman spectroscopies confirm the stabilization of the AZ cations in the locally distorted cubic structure. AZPbBr3 QDs exhibit bright photoluminescence with quantum efficiencies of up to 80%. Stabilized with cationic and zwitterionic capping ligands, single AZPbBr3 QDs exhibit stable single-photon emission, which is another essential attribute of QDs. In particular, didodecyldimethylammonium bromide and 2-octyldodecyl-phosphoethanolamine ligands afford AZPbBr3 QDs with high spectral stability at both room and cryogenic temperatures, reduced blinking with a characteristic ON fraction larger than 85%, and high single-photon purity (g(2)(0) = 0.1), all comparable to the best-reported values for MAPbBr3 and FAPbBr3 QDs of the same size.
Collapse
Affiliation(s)
- Maryna I Bodnarchuk
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Leon G Feld
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Chenglian Zhu
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Simon C Boehme
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Federica Bertolotti
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, Como 22100, Italy
| | - Jonathan Avaro
- Centre for X-ray Analytics & Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen 9014, Switzerland
| | - Marcel Aebli
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Showkat Hassan Mir
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, Como 22100, Italy
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Antonietta Guagliardi
- Istituto di Cristallografia and To.Sca.Lab, Consiglio Nazionale delle Ricerche, via Valleggio 11, Como 22100, Italy
| | - Gabriele Rainò
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Maksym V Kovalenko
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
5
|
Mostaghimi M, Pacheco Hernandez H, Jiang Y, Wenzel W, Heinke L, Kozlowska M. On-off conduction photoswitching in modelled spiropyran-based metal-organic frameworks. Commun Chem 2023; 6:275. [PMID: 38110545 PMCID: PMC10728195 DOI: 10.1038/s42004-023-01072-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Materials with photoswitchable electronic properties and conductance values that can be reversibly changed over many orders of magnitude are highly desirable. Metal-organic framework (MOF) films functionalized with photoresponsive spiropyran molecules demonstrated the general possibility to switch the conduction by light with potentially large on-off-ratios. However, the fabrication of MOF materials in a trial-and-error approach is cumbersome and would benefit significantly from in silico molecular design. Based on the previous proof-of-principle investigation, here, we design photoswitchable MOFs which incorporate spiropyran photoswitches at controlled positions with defined intermolecular distances and orientations. Using multiscale modelling and automated workflow protocols, four MOF candidates are characterized and their potential for photoswitching the conductivity is explored. Using ab initio calculations of the electronic coupling between the molecules in the MOF, we show that lattice distances and vibrational flexibility tremendously modulate the possible conduction photoswitching between spiropyran- and merocyanine-based MOFs upon light absorption, resulting in average on-off ratios higher than 530 and 4200 for p- and n-conduction switching, respectively. Further functionalization of the photoswitches with electron-donating/-withdrawing groups is demonstrated to shift the energy levels of the frontier orbitals, permitting a guided design of new spiropyran-based photoswitches towards controlled modification between electron and hole conduction in a MOF.
Collapse
Affiliation(s)
- Mersad Mostaghimi
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Helmy Pacheco Hernandez
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Yunzhe Jiang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Lars Heinke
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany.
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
6
|
Xu K, Pérez-Fidalgo L, Charles BL, Weller MT, Alonso MI, Goñi AR. Using pressure to unravel the structure-dynamic-disorder relationship in metal halide perovskites. Sci Rep 2023; 13:9300. [PMID: 37291135 PMCID: PMC10250390 DOI: 10.1038/s41598-023-36501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
The exceptional optoelectronic properties of metal halide perovskites (MHPs) are presumed to arise, at least in part, from the peculiar interplay between the inorganic metal-halide sublattice and the atomic or molecular cations enclosed in the cage voids. The latter can exhibit a roto-translative dynamics, which is shown here to be at the origin of the structural behavior of MHPs as a function of temperature, pressure and composition. The application of high hydrostatic pressure allows for unraveling the nature of the interaction between both sublattices, characterized by the simultaneous action of hydrogen bonding and steric hindrance. In particular, we find that under the conditions of unleashed cation dynamics, the key factor that determines the structural stability of MHPs is the repulsive steric interaction rather than hydrogen bonding. Taking as example the results from pressure and temperature-dependent photoluminescence and Raman experiments on MAPbBr[Formula: see text] but also considering the pertinent MHP literature, we provide a general picture about the relationship between the crystal structure and the presence or absence of cationic dynamic disorder. The reason for the structural sequences observed in MHPs with increasing temperature, pressure, A-site cation size or decreasing halide ionic radius is found principally in the strengthening of the dynamic steric interaction with the increase of the dynamic disorder. In this way, we have deepened our fundamental understanding of MHPs; knowledge that could be coined to improve performance in future optoelectronic devices based on this promising class of semiconductors.
Collapse
Affiliation(s)
- Kai Xu
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Luis Pérez-Fidalgo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Bethan L Charles
- Department of Chemistry and Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Department of Mechanical Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
| | - Mark T Weller
- Department of Chemistry and Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Department of Chemistry, Cardiff University, Wales, CF10 3AT, UK
| | - M Isabel Alonso
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193, Bellaterra, Spain
| | - Alejandro R Goñi
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193, Bellaterra, Spain.
- ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
7
|
Zou S, Zhao X, Lyu J, Ouyang W, Liu R, Xu S. Light Amplification in Fe-Doped CsPbBr 3 Crystal Microwire Excited by Continuous-Wave Laser. J Phys Chem Lett 2023; 14:4815-4821. [PMID: 37191350 DOI: 10.1021/acs.jpclett.3c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Electrically pumped halide perovskite laser diodes remain unexplored, and it is widely acknowledged that continuous-wave (CW) lasing will be a crucial step. Here, we demonstrate room-temperature amplified spontaneous emission of Fe-doped CsPbBr3 crystal microwire excited by a CW laser. Temperature-dependent photoluminescence spectra indicate that the Fe dopant forms a shallow level trap states near the band edge of the lightly doped CsPbBr3 microcrystal. Pump intensity-dependent time-resolved PL spectra show that the introduced Fe dopant level makes the electron more stable in excited states, suitable for the population inversion. The emission peak intensity of the lightly Fe-doped microwire increases nonlinearly above a threshold of 12.3 kW/cm2 under CW laser excitation, indicating a significant light amplification. Under high excitation, the uniform crystal structure and surface outcoupling in Fe-doped perovskite crystal microwires enhanced the spontaneous emission. These results reveal the considerable promise of Fe-doped perovskite crystal microwires toward low-cost, high-performance, room-temperature electrical pumping perovskite lasers.
Collapse
Affiliation(s)
- Shuangyang Zou
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoan Zhao
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100149, China
| | - Jing Lyu
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Wenze Ouyang
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruibin Liu
- Beijing Key Lab of Nano-photonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Shenghua Xu
- Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100149, China
| |
Collapse
|