1
|
Chebaibi M, Bourhia M, Amrati FEZ, Slighoua M, Mssillou I, Aboul-Soud MAM, Khalid A, Hassani R, Bousta D, Achour S, Benhida R, Daoud R. Salsoline derivatives, genistein, semisynthetic derivative of kojic acid, and naringenin as inhibitors of A42R profilin-like protein of monkeypox virus: in silico studies. Front Chem 2024; 12:1445606. [PMID: 39318419 PMCID: PMC11420140 DOI: 10.3389/fchem.2024.1445606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Monkeypox virus (MPV) infection has developed into a re-emerging disease, and despite the potential of tecovirimat and cidofovir drugs, there is currently no conclusive treatment. The treatment's effectiveness and cost challenges motivate us to use In Silico approaches to seek natural compounds as candidate antiviral inhibitors. Using Maestro 11.5 in Schrodinger suite 2018, available natural molecules with validated chemical structures collected from Eximed Laboratory were subjected to molecular docking and ADMET analysis against the highly conserved A42R Profilin-like Protein of Monkeypox Virus Zaire-96-I-16 (PDB: 4QWO) with resolution of 1.52 Å solved 3D structure. Compared to the FDA-approved Tecovirimat, molecular docking revealed that Salsoline derivatives, Genistein, Semisynthetic derivative of kojic acid, and Naringenin had strengthened affinity (-8.9 to -10 kcal/mol) to 4QWO, and the molecular dynamic's simulation confirmed their high binding stability. In support of these results, the hydrogen bond analysis indicated that the Salsoline derivative had the most robust interaction with the binding pockets of 4QWO among the four molecules. Moreover, the comparative free energy analyses using MM-PBSA revealed an average binding free energy of the complexes of Salsoline derivative, Genistein, Semisynthetic derivative of kojic acid, Naringenin, of -106.418, -46.808, -50.770, and -63.319 kJ/mol, respectively which are lower than -33.855 kJ/mol of the Tecovirimat complex. Interestingly, these results and the ADMET predictions suggest that the four compounds are promising inhibitors of 4QWO, which agrees with previous results showing their antiviral activities against other viruses.
Collapse
Affiliation(s)
- Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Fatima ez-zahra Amrati
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez, Morocco
| | - Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Asaad Khalid
- Health Research Center, Jazan University, Jazan, Saudi Arabia
| | - Rym Hassani
- Environment and Nature Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Dalila Bousta
- National Agency of Medicinal and Aromatic Plants Tounate, Taounate, Morocco
| | - Sanae Achour
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Rachid Benhida
- Chemical and Biochemical Sciences-Green Processing Engineering, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Processing Engineering, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
2
|
Uddin KM, Meem MH, Akter M, Rahman S, Al-Gawati MA, Alarifi N, Albrithen H, Alodhayb A, Poirier RA, Bhuiyan MH. Design, synthesis, and bioevaluation of novel unsaturated cyanoacetamide derivatives: In vitro and in silico exploration. MethodsX 2024; 12:102691. [PMID: 38660042 PMCID: PMC11041845 DOI: 10.1016/j.mex.2024.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
In this study, we synthesized novel α,β-unsaturated 2-cyanoacetamide derivatives (1-5) using microwave-assisted Knoevenagel condensation. Characterization of these compounds was carried out using FTIR and 1H NMR spectroscopy. We then evaluated their in vitro antibacterial activity against both gram-positive and gram-negative pathogenic bacteria. Additionally, we employed in silico methods, including ADMET prediction and density functional theory (DFT) calculations of molecular orbital properties, to investigate these cyanoacetamide derivatives (1-5). Molecular docking was used to assess the binding interactions of these derivatives (1-5) with seven target proteins (5MM8, 4NZZ, 7FEQ, 5NIJ, ITM2, 6SE1, and 5GVZ) and compared them to the reference standard tyrphostin AG99. Notably, derivative 5 exhibited the most favorable binding affinity, with a binding energy of -7.7 kcal mol-1 when interacting with the staphylococcus aureus (PDB:5MM8), while also meeting all drug-likeness criteria. Additionally, molecular dynamics simulations were carried out to evaluate the stability of the interaction between the protein and ligand, utilizing parameters such as Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), Radius of Gyration (Rg), and Principal Component Analysis (PCA). A 50 nanosecond molecular dynamics (MD) simulation was performed to investigate stability further, incorporating RMSD and RMSF analyses on compound 5 within the active binding site of the modeled protein across different temperatures (300, 305, 310, and 320 K). Among these temperatures, compound 5 exhibited an RMSD value ranging from approximately 0.2 to 0.3 nm at 310 K (body temperature) with the 5MM8 target, which differed from the other temperature conditions. The in silico results suggest that compound 5 maintained significant conformational stability throughout the 50 ns simulation period. It is consistent with its low docking energy and in vitro findings concerning α,β-unsaturated cyanoacetamides. Key insights from this study include:•The creation of innovative α,β-unsaturated 2-cyanoacetamide derivatives (1-5) employing cost-effective, licensed, versatile, and efficient software for both in silico and in vitro assessment of antibacterial activity.•Utilization of FTIR and NMR techniques for characterizing compounds 1-5.
Collapse
Affiliation(s)
- Kabir M. Uddin
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Mehnaz Hossain Meem
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka 1217, Bangladesh
| | - Mokseda Akter
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram 4331, Bangladesh
| | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmoud A. Al-Gawati
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nahed Alarifi
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad Albrithen
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raymond A. Poirier
- Department of Chemistry, Memorial University, St. John's, Newfoundland A1B 3 × 7, Canada
| | - Md. Mosharef H. Bhuiyan
- Bioorganic and Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
3
|
Rout M, Dey S, Mishra S, Panda S, Singh MK, Sinha R, Dehury B, Pati S. Machine learning and classical MD simulation to identify inhibitors against the P37 envelope protein of monkeypox virus. J Biomol Struct Dyn 2024; 42:3935-3948. [PMID: 37221882 DOI: 10.1080/07391102.2023.2216290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Monkeypox virus (MPXV) outbreak is a serious public health concern that requires international attention. P37 of MPXV plays a pivotal role in DNA replication and acts as one of the promising targets for antiviral drug design. In this study, we intent to screen potential analogs of existing FDA approved drugs of MPXV against P37 using state-of-the-art machine learning and computational biophysical techniques. AlphaFold2 guided all-atoms molecular dynamics simulations optimized P37 structure is used for molecular docking and binding free energy calculations. Similar to members of Phospholipase-D family , the predicted P37 structure also adopts a β-α-β-α-β sandwich fold, harbouring strongly conserved HxKxxxxD motif. The binding pocket comprises of Tyr48, Lys86, His115, Lys117, Ser130, Asn132, Trp280, Asn240, His325, Lys327 and Tyr346 forming strong hydrogen bonds and dense hydrophobic contacts with the screened analogs and is surrounded by positively charged patches. Loops connecting the two domains and C-terminal region exhibit high degree of flexibility. In some structural ensembles, the partial disorderness in the C-terminal region is presumed to be due to its low confidence score, acquired during structure prediction. Transition from loop to β-strands (244-254 aa) in P37-Cidofovir and its analog complexes advocates the need for further investigations. MD simulations support the accuracy of the molecular docking results, indicating the potential of analogs as potent binders of P37. Taken together, our results provide preferable understanding of molecular recognition and dynamics of ligand-bound states of P37, offering opportunities for development of new antivirals against MPXV. However, the need of in vitro and in vivo assays for confirmation of these results still persists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Suchanda Dey
- Biomics and Biodiversity Lab, Siksha 'O' Anusandhan (deemed to be) University, Bhubaneswar, Odisha, India
| | - Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Sunita Panda
- Mycology Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Rohan Sinha
- Computer Science, National Institute of Technology Patna, Patna, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Roy BG, Choi J, Fuchs MF. Predictive Modeling of Proteins Encoded by a Plant Virus Sheds a New Light on Their Structure and Inherent Multifunctionality. Biomolecules 2024; 14:62. [PMID: 38254661 PMCID: PMC10813169 DOI: 10.3390/biom14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Plant virus genomes encode proteins that are involved in replication, encapsidation, cell-to-cell, and long-distance movement, avoidance of host detection, counter-defense, and transmission from host to host, among other functions. Even though the multifunctionality of plant viral proteins is well documented, contemporary functional repertoires of individual proteins are incomplete. However, these can be enhanced by modeling tools. Here, predictive modeling of proteins encoded by the two genomic RNAs, i.e., RNA1 and RNA2, of grapevine fanleaf virus (GFLV) and their satellite RNAs by a suite of protein prediction software confirmed not only previously validated functions (suppressor of RNA silencing [VSR], viral genome-linked protein [VPg], protease [Pro], symptom determinant [Sd], homing protein [HP], movement protein [MP], coat protein [CP], and transmission determinant [Td]) and previously identified putative functions (helicase [Hel] and RNA-dependent RNA polymerase [Pol]), but also predicted novel functions with varying levels of confidence. These include a T3/T7-like RNA polymerase domain for protein 1AVSR, a short-chain reductase for protein 1BHel/VSR, a parathyroid hormone family domain for protein 1EPol/Sd, overlapping domains of unknown function and an ABC transporter domain for protein 2BMP, and DNA topoisomerase domains, transcription factor FBXO25 domain, or DNA Pol subunit cdc27 domain for the satellite RNA protein. Structural predictions for proteins 2AHP/Sd, 2BMP, and 3A? had low confidence, while predictions for proteins 1AVSR, 1BHel*/VSR, 1CVPg, 1DPro, 1EPol*/Sd, and 2CCP/Td retained higher confidence in at least one prediction. This research provided new insights into the structure and functions of GFLV proteins and their satellite protein. Future work is needed to validate these findings.
Collapse
Affiliation(s)
- Brandon G. Roy
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 15 Castle Creek Drive, Geneva, NY 14456, USA; (J.C.); (M.F.F.)
| | | | | |
Collapse
|
5
|
Panda SK, Sen Gupta PS, Karmakar S, Biswal S, Mahanandia NC, Rana MK. Unmasking an Allosteric Binding Site of the Papain-like Protease in SARS-CoV-2: Molecular Dynamics Simulations of Corticosteroids. J Phys Chem Lett 2023; 14:10278-10284. [PMID: 37942913 DOI: 10.1021/acs.jpclett.3c01980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
To date, mechanistic insights into many clinical drugs against COVID-19 remain unexplored. Dexamethasone, a corticosteroid, is one of them. While treating the entire corticosteroid database, including vitamins D2 and D3, with cutting-edge computational techniques, several intriguing results are unfolded. From the top-notch candidates, dexamethasone is likely to inhibit the viral main protease (Mpro), with vitamin D3 exhibiting multitarget [Mpro, papain-like protease (PLpro), and nucleocapsid protein (N-pro)] roles and ciclesonide's dynamic flipping disinterring a cryptic allosteric site in the PLpro enzyme. The results rationalize why these drugs improve the health of COVID-19 patients. Understanding an enzyme's secret binding site is essential to understanding how the enzyme works and how to inhibit its function. Ciclesonide's allosteric inhibition could not only jeopardize PLpro's catalytic role in polyprotein processing but also make it less vulnerable to the host body's defense machinery. Hotspot residues in the identified allosteric site could be considered for effective therapeutic designs against PLpro.
Collapse
Affiliation(s)
- Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur 760010, Odisha, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University (DYPIU), Akurdi, Pune 411044, Maharashtra, India
| | - Shaswata Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur 760010, Odisha, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur 760010, Odisha, India
| | - Nimai Charan Mahanandia
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa 110012, New Delhi, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Berhampur 760010, Odisha, India
| |
Collapse
|
6
|
Shamim MA, Satapathy P, Padhi BK, Veeramachaneni SD, Akhtar N, Pradhan A, Agrawal A, Dwivedi P, Mohanty A, Pradhan KB, Kabir R, Rabaan AA, Alotaibi J, Al Ismail ZA, Alsoliabi ZA, Al Fraij A, Sah R, Rodriguez-Morales AJ. Pharmacological treatment and vaccines in monkeypox virus: a narrative review and bibliometric analysis. Front Pharmacol 2023; 14:1149909. [PMID: 37214444 PMCID: PMC10196034 DOI: 10.3389/fphar.2023.1149909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Mpox (earlier known as monkeypox) virus infection is a recognized public health emergency. There has been little research on the treatment options. This article reviews the specific drugs used to treat mpox virus infection and the vaccines used here. Instead of focusing on the mechanistic basis, this review narrates the practical, real-life experiences of individual patients of mpox virus disease being administered these medicines. We conducted a bibliometric analysis on the treatment of the mpox virus using data from several databases like PubMed, Scopus, and Embase. The research on this topic has grown tremendously recently but it is highly concentrated in a few countries. Cidofovir is the most studied drug. This is because it is indicated and also used off-label for several conditions. The drugs used for mpox virus infection include tecovirimat, cidofovir, brincidofovir, vaccinia immune globulin, and trifluridine. Tecovirimat is used most frequently. It is a promising option in progressive mpox disease in terms of both efficacy and safety. Brincidofovir has been associated with treatment discontinuation due to elevated hepatic enzymes. Cidofovir is also not the preferred drug, often used because of the unavailability of tecovirimat. Trifluridine is used topically as an add-on agent along with tecovirimat for ocular manifestations of mpox virus disease. No study reports individual patient data for vaccinia immune globulin. Though no vaccine is currently approved for mpox virus infection, ACAM 2000 and JYNNEOS are the vaccines being mainly considered. ACAM 2000 is capable of replicating and may cause severe adverse reactions. It is used when JYNNEOS is contraindicated. Several drugs and vaccines are under development and have been discussed alongside pragmatic aspects of mpox virus treatment and prevention. Further studies can provide more insight into the safety and efficacy of Tecovirimat in actively progressing mpox virus disease.
Collapse
Affiliation(s)
| | - Prakisini Satapathy
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bijaya Kumar Padhi
- Department of Community Medicine, School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Naushaba Akhtar
- Indian Council of Medical Research—Regional Medical Research Centre, Bhubaneswar, India
| | - Anindita Pradhan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhimanyu Agrawal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
- Centre of Excellence for Tribal Health, All India Institute of Medical Sciences, Jodhpur, India
| | - Aroop Mohanty
- All India Institute of Medical Sciences, Gorakhpur, India
| | | | - Russell Kabir
- School of Allied Health, Anglia Ruskin University, Essex, United Kingdom
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious Diseases Unit, King Faisal Specialist Hospital and Research Center, Department of Medicine, Riyadh, Saudi Arabia
| | - Zainab A. Al Ismail
- Long Term Care Department, Dhahran Long Term Hospital, Dhahran, Saudi Arabia
| | | | - Ali Al Fraij
- Medical Laboratories and Blood Bank Department, Jubail Health Network, Jubail, Saudi Arabia
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
- Harvard Medical School, Boston, MA, United States
- Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|