1
|
Zhou C, Feng Y, Li Z, Shen L, Li X, Wang Y, Han G, Kuang T, Liu C, Shen JR, Wang W. Structural and spectroscopic insights into fucoxanthin chlorophyll a/c-binding proteins of diatoms in diverse oligomeric states. PLANT COMMUNICATIONS 2024; 5:101041. [PMID: 39030906 DOI: 10.1016/j.xplc.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Diatoms, a group of prevalent marine algae, contribute significantly to global primary productivity. Their substantial biomass is linked to enhanced absorption of blue-green light underwater, facilitated by fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs), which exhibit oligomeric diversity across diatom species. Using mild clear native PAGE analysis of solubilized thylakoid membranes, we displayed monomeric, dimeric, trimeric, tetrameric, and pentameric FCPs in diatoms. Mass spectrometry analysis revealed that each oligomeric FCP has a specific protein composition, and together they constitute a large Lhcf family of FCP antennas. In addition, we resolved the structures of the Thalassiosira pseudonana FCP (Tp-FCP) homotrimer and the Chaetoceros gracilis FCP (Cg-FCP) pentamer by cryoelectron microscopy at 2.73-Å and 2.65-Å resolution, respectively. The distinct pigment compositions and organizations of various oligomeric FCPs affect their blue-green light-harvesting, excitation energy transfer pathways. Compared with dimeric and trimeric FCPs, the Cg-FCP tetramer and Cg-FCP pentamer exhibit stronger absorption by Chl c, redshifted and broader Chl a fluorescence emission, and more robust circular dichroism signals originating from Chl a-carotenoid dimers. These spectroscopic characteristics indicate that Chl a molecules in the Cg-FCP tetramer and Cg-FCP pentamer are more heterogeneous than in both dimers and the Tp-FCP trimer. The structural and spectroscopic insights provided by this study contribute to a better understanding of the mechanisms that empower diatoms to adapt to fluctuating light environments.
Collapse
Affiliation(s)
- Cuicui Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yue Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lili Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaoyi Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China
| | - Yumei Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, P.R. China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China
| | - Cheng Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P.R. China; China National Botanical Garden, Beijing 100093, P.R. China; Academician Workstation of the Agricultural High-Tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, P.R. China.
| |
Collapse
|
2
|
Mohamed Abdoul-Latif F, Ainane A, Houmed Aboubaker I, Merito Ali A, Mohamed H, Jutur PP, Ainane T. Unlocking the Green Gold: Exploring the Cancer Treatment and the Other Therapeutic Potential of Fucoxanthin Derivatives from Microalgae. Pharmaceuticals (Basel) 2024; 17:960. [PMID: 39065808 PMCID: PMC11280058 DOI: 10.3390/ph17070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Fucoxanthin, a carotenoid widely studied in marine microalgae, is at the heart of scientific research because of its promising bioactive properties for human health. Its unique chemical structure and specific biosynthesis, characterized by complex enzymatic conversion in marine organisms, have been examined in depth in this review. The antioxidant, anti-inflammatory, and anti-cancer activities of fucoxanthin have been rigorously supported by data from in vitro and in vivo experiments and early clinical trials. Additionally, this review explores emerging strategies to optimize the stability and efficacy of fucoxanthin, aiming to increase its solubility and bioavailability to enhance its therapeutic applications. However, despite these potential benefits, challenges persist, such as limited bioavailability and technological obstacles hindering its large-scale production. The medical exploitation of fucoxanthin thus requires an innovative approach and continuous optimization to overcome these barriers. Although further research is needed to refine its clinical use, fucoxanthin offers promising potential in the development of natural therapies aimed at improving human health. By integrating knowledge about its biosynthesis, mechanisms of action, and potential beneficial effects, future studies could open new perspectives in the treatment of cancer and other chronic diseases.
Collapse
Affiliation(s)
| | - Ayoub Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Ibrahim Houmed Aboubaker
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Ali Merito Ali
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
| | - Houda Mohamed
- Center for Research and Study of Djibouti, Medicinal Research Institute, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Tarik Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| |
Collapse
|
3
|
Akhtar P, Feng Y, Jana S, Wang W, Shen JR, Tan HS, Lambrev PH. Ultrafast Energy Transfer in a Diatom Photosystem II Supercomplex. J Phys Chem Lett 2024; 15:5838-5847. [PMID: 38788163 DOI: 10.1021/acs.jpclett.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The light-harvesting complexes (LHCs) of diatoms, specifically fucoxanthin-Chl a/c binding proteins (FCPs), exhibit structural and functional diversity, as highlighted by recent structural studies of photosystem II-FCP (PSII-FCPII) supercomplexes from different diatom species. The excitation dynamics of PSII-FCPII supercomplexes isolated from the diatom Thalassiosira pseudonana was explored using time-resolved fluorescence spectroscopy and two-dimensional electronic spectroscopy at room temperature and 77 K. Energy transfer between FCPII and PSII occurred remarkably fast (<5 ps), emphasizing the efficiency of FCPII as a light-harvesting antenna. The presence of long-wavelength chlorophylls may further help concentrate excitations in the core complex and increase the efficiency of light harvesting. Structure-based calculations reveal remarkably strong excitonic couplings between chlorophylls in the FCP antenna and between FCP and the PSII core antenna that are the basis for the rapid energy transfer.
Collapse
Affiliation(s)
- Parveen Akhtar
- HUN-REN Biological Research Centre, Szeged, Temesvári körút 62, Szeged 6726, Hungary
| | - Yue Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Sanjib Jana
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Howe-Siang Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Petar H Lambrev
- HUN-REN Biological Research Centre, Szeged, Temesvári körút 62, Szeged 6726, Hungary
| |
Collapse
|
4
|
Zheng M, Pang X, Chen M, Tian L. Ultrafast energy quenching mechanism of LHCSR3-dependent photoprotection in Chlamydomonas. Nat Commun 2024; 15:4437. [PMID: 38789432 PMCID: PMC11126702 DOI: 10.1038/s41467-024-48789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojie Pang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Zhao S, Shen L, Li X, Tao Q, Li Z, Xu C, Zhou C, Yang Y, Sang M, Han G, Yu LJ, Kuang T, Shen JR, Wang W. Structural insights into photosystem II supercomplex and trimeric FCP antennae of a centric diatom Cyclotella meneghiniana. Nat Commun 2023; 14:8164. [PMID: 38071196 PMCID: PMC10710467 DOI: 10.1038/s41467-023-44055-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Diatoms are dominant marine algae and contribute around a quarter of global primary productivity, the success of which is largely attributed to their photosynthetic capacity aided by specific fucoxanthin chlorophyll-binding proteins (FCPs) to enhance the blue-green light absorption under water. We purified a photosystem II (PSII)-FCPII supercomplex and a trimeric FCP from Cyclotella meneghiniana (Cm) and solved their structures by cryo-electron microscopy (cryo-EM). The structures reveal detailed organizations of monomeric, dimeric and trimeric FCP antennae, as well as distinct assemblies of Lhcx6_1 and dimeric FCPII-H in PSII core. Each Cm-PSII-FCPII monomer contains an Lhcx6_1, an FCP heterodimer and other three FCP monomers, which form an efficient pigment network for harvesting energy. More diadinoxanthins and diatoxanthins are found in FCPs, which may function to quench excess energy. The trimeric FCP contains more chlorophylls c and fucoxanthins. These diversified FCPs and PSII-FCPII provide a structural basis for efficient light energy harvesting, transfer, and dissipation in C. meneghiniana.
Collapse
Affiliation(s)
- Songhao Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lili Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Xiaoyi Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Qiushuang Tao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Caizhe Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Cuicui Zhou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Min Sang
- China National Botanical Garden, Beijing, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|