1
|
Yao R, Lin J, Liu K, Xu Y, Xiao B, Zhao J, Guo Z, Liu Q, Yuan W. Structure and Optical Properties of Sn-Based Halide Perovskites (C 10H 18N 2)SnX 4 (X = Cl, Br, I). ACS OMEGA 2024; 9:22352-22359. [PMID: 38799330 PMCID: PMC11112552 DOI: 10.1021/acsomega.4c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Low-dimensional tin-based halide perovskites are considered as eco-friendly substitutions of the iconic lead-based perovskites to host the potential as optoelectronic materials. However, a fundamental understanding of the structure-property relationship of these Sn(II)-based hybrids is still inadequate due to the limited members of this material family. To our knowledge, there is still lack of reports on a series of Sn(II)-based halide perovskites with the same organic cation but covering chloride, bromide, and iodide. In this work, three new halide perovskites TMPDASnX4 (X = Cl, Br, I) (TMPDA = N,N,N',N'-tetramethyl-1,4-phenylenediamine) are successfully synthesized, which provide the ideal paradigm to study the halogen-dependent evolution of the structure and properties of Sn(II)-based hybrid perovskites. Despite sharing the same monoclinic lattice (P21/m space group), it is demonstrated that TMPDASnCl4 adopts a one-dimensional structure composed of a five-coordinated pyramid configuration due to an extremely long Sn···Cl distance, while the typical two-dimensional motif is still maintained in TMPDASnBr4 and TMPDASnI4. The ambient stability is declined in the order from chloride to bromide and then to iodide. TMPDASnCl4 exhibits a broad-band bluish-white-light emission (centered at 515 nm, full width at half-maximum (fwhm) = 193 nm) with the Commission Internationale de l' Elairage (CIE) coordinates as (0.29, 0.34). Further, the correlated color temperature and color-rendering index were determined as 7617 K and 80.5, respectively. Based on the synthesis of new crystals, our work sheds light on the composition-structure-property relationship of hybrid Sn(II)-based halide perovskites.
Collapse
Affiliation(s)
- Ruonan Yao
- Department
of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiawei Lin
- Department
of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The
Beijing Municipal Key Laboratory of New Energy Materials and Technologies,
School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuanchang Xu
- Department
of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Boyi Xiao
- Department
of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The
Beijing Municipal Key Laboratory of New Energy Materials and Technologies,
School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department
of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The
Beijing Municipal Key Laboratory of New Energy Materials and Technologies,
School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department
of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Sahoo S, Rana R, Samal SL. Structural Phase Transition in 0D (3,5-DMP) 2Bi 1-xSb xCl 5 Metal Halides: Expression of the Lone Pair Effect and Polyhedral Distortion. Inorg Chem 2024; 63:7364-7377. [PMID: 38588023 DOI: 10.1021/acs.inorgchem.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Low-dimensional Bi/Sb-based organic-inorganic metal halides (OIMHs) have attracted immense attention from the research community because of their structural diversity and efficient luminescence properties. Further understanding of the relationship between the structure and luminescence properties of these materials is of utmost importance for tuning the luminescence properties for various practical applications. Herein, we have synthesized two lead-free Bi/Sb-based novel OIMHs, (3,5-DMP)2BiCl5 and (3,5-DMP)2SbCl5 [(3,5-DMP) = 3,5-dimethylpiperidine], with zero-dimensional (0D) structures and crystallizing in triclinic (P1 ¯ space group) and monoclinic (P21/c space group) crystal systems, respectively. Both the compounds behave as typical semiconductors with indirect optical band gaps of 3.34 and 3.36 eV for pristine Bi and Sb compounds. These compounds exhibit higher environmental and thermal stability at ambient conditions. Gradual substitution of Sb at the Bi site in (3,5-DMP)2Bi1-xSbxCl5 resulted in the introduction of structural strain due to the significant expression of the lone pair effect, thus leading to a structural transition from the triclinic to monoclinic phase. The effect of the structural phase transition on the optical properties is also studied in (3,5-DMP)2Bi1-xSbxCl5. This work may offer new direction and guidance for exploring various 0D hybrid metal halides and tuning the structures for improvement in the luminescence properties.
Collapse
Affiliation(s)
- Subhasish Sahoo
- Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Rajanikanta Rana
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| | - Saroj L Samal
- Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
3
|
Coccia C, Morana M, Mahata A, Kaiser W, Moroni M, Albini B, Galinetto P, Folpini G, Milanese C, Porta A, Mosconi E, Petrozza A, De Angelis F, Malavasi L. Ligand-Induced Chirality in ClMBA 2 SnI 4 2D Perovskite. Angew Chem Int Ed Engl 2024; 63:e202318557. [PMID: 38189576 DOI: 10.1002/anie.202318557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S-)ClMBA2 SnI4 (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system. ClMBA2 SnI4 samples exhibit a low band gap (2.12 eV) together with broad emission extending in the red region of the spectrum (∼1.7 eV). Chirality transfer from the organic ligand induces chiroptical activity in the 465-530 nm range. Density functional theory calculations show a Rashba type band splitting for the chiral samples and no band splitting for the racemic isomer. Self-trapped exciton formation is at the origin of the large Stokes shift in the emission. Careful correlation with analogous lead and lead-free 2D chiral perovskites confirms the role of the symmetry-breaking distortions in the inorganic layers associated with the ligands as the source of the observed chiroptical properties providing also preliminary structure-property correlation in 2D chiral perovskites.
Collapse
Affiliation(s)
- Clarissa Coccia
- Department of Chemistry and INSTM, University of Pavia, Via Tarameli 12, 27100, Pavia, Italy
| | - Marta Morana
- Department of Earth Science, University of Firenze, Via G. La Pira 4, 50121, Firenze, Italy
| | - Arup Mahata
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), 06123, Perugia, Italy
- Department of Chemistry, Indian Institute of Technology Hyderabad Kandi, Sangareddy, Telangana, 502285, India
| | - Waldemar Kaiser
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), 06123, Perugia, Italy
| | - Marco Moroni
- Department of Chemistry and INSTM, University of Pavia, Via Tarameli 12, 27100, Pavia, Italy
| | - Benedetta Albini
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Pietro Galinetto
- Department of Physics, University of Pavia, Via Bassi 6, 27100, Pavia, Italy
| | - Giulia Folpini
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133, Milan, Italy
- Istituto di Fotonica e Nanotecnologie - CNR, 20133, Milan, Italy
| | - Chiara Milanese
- Department of Chemistry and INSTM, University of Pavia, Via Tarameli 12, 27100, Pavia, Italy
| | - Alessio Porta
- Department of Chemistry and INSTM, University of Pavia, Via Tarameli 12, 27100, Pavia, Italy
| | - Edoardo Mosconi
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), 06123, Perugia, Italy
| | - Annamaria Petrozza
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133, Milan, Italy
| | - Filippo De Angelis
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), 06123, Perugia, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia and INSTM, 06123, Perugia, Italy
- SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University, Suwon, 440-746, Korea
| | - Lorenzo Malavasi
- Department of Chemistry and INSTM, University of Pavia, Via Tarameli 12, 27100, Pavia, Italy
| |
Collapse
|
4
|
Peng C, Wei J, Duan L, Tian Y, Wei Q. Mn(II)-Activated Zero-Dimensional Zinc(II)-Based Metal Halide Hybrids with Near-Unity Photoluminescence Quantum Yield. MATERIALS (BASEL, SWITZERLAND) 2024; 17:562. [PMID: 38591378 PMCID: PMC10856753 DOI: 10.3390/ma17030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 04/10/2024]
Abstract
As derivatives of metal halide perovskite materials, low-dimensional metal halide materials have become important materials that have attracted much attention in recent years. As one branch, zinc-based metal halides have the potential for practical applications due to their lead-free, low-toxicity and high-stability characteristics. However, pure zinc-based metal halide materials are still limited by their poor optical properties and cannot achieve large-scale practical applications. Therefore, in this work, we report an organic-inorganic hybrid zero-dimensional zinc bromide, (TDMP)ZnBr4, using transition metal Mn2+ ions as dopants and incorporating them into the (TDMP)ZnBr4 lattice. The original non-emissive (TDMP)ZnBr4 exhibits bright green emission under the excitation of external UV light after the introduction of Mn2+ ions with a PL peak position located at 538 nm and a PLQY of up to 91.2%. Through the characterization of relevant photophysical properties and the results of theoretical calculations, we confirm that this green emission in Mn2+:(TDMP)ZnBr4 originates from the 4T1 → 6A1 optical transition process of Mn2+ ions in the lattice structure, and the near-unity PLQY benefits from highly localized electrons generated by the unique zero-dimensional structure of the host material (TDMP)ZnBr4. This work provides theoretical guidance and reference for expanding the family of zinc-based metal halide materials and improving and controlling their optical properties through ion doping.
Collapse
Affiliation(s)
- Chengyu Peng
- Traffic Information Engineering Institute, Guangxi Transport Vocational and Technical College, Nanning 530004, China
| | - Jiazheng Wei
- Traffic Information Engineering Institute, Guangxi Transport Vocational and Technical College, Nanning 530004, China
| | - Lian Duan
- Traffic Information Engineering Institute, Guangxi Transport Vocational and Technical College, Nanning 530004, China
| | - Ye Tian
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
| | - Qilin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Ben Bechir M, Alresheedi F. Morphological, structural, optical and dielectric analysis of Cs 2TiBr 6 perovskite nanoparticles. RSC Adv 2024; 14:1634-1648. [PMID: 38179101 PMCID: PMC10765970 DOI: 10.1039/d3ra06860a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
In the pursuit of lead-free perovskite materials suitable for harnessing solar energy, a recent discovery has emerged regarding Cs2TiBr6. This compound has garnered attention as a prospective candidate, exhibiting favorable optical and electrical characteristics alongside exceptional resilience when subjected to environmental strains. This study details the successful synthesis of non-hazardous metal halide nanoparticles of Cs2TiBr6via the slow cooling method. Comprehensive investigations into the structural, optical, and dielectric characteristics have been undertaken. The temperature sensitivity of various electrical properties, including the dielectric constant, loss factor, electric modulus, and AC/DC conductivity, is evident in this perovskite material. This phenomenon is observed across a frequency range of 1 to 107 Hz. Furthermore, examination of the Nyquist plot highlights the distinctive contributions of both grain and grain boundaries to the overall impedance characteristics. In the high-frequency range, it is observed that the dielectric constant exhibits an upward trend as the temperature rises. Examination of the adapted Cole-Cole plot unveils that both space charge and free charge conductivity escalate with increasing temperature, while concurrently, the relaxation time experiences a reduction with the temperature's ascent. We observed an asymmetrical pattern in the electric modulus spectra at varying temperatures using a modified Kohlrausch-Williams-Watts equation. This asymmetry is consistent with the inherent non-Debye nature of perovskite materials. Additionally, as the temperature increases, we note a shift in the imaginary component of the electric modulus spectra, transitioning from a non-Debye character towards a semi-Debye nature, though it does not achieve a strictly Debye-type response. This transformation indicates the semiconducting properties of the material. We elucidate the AC conductivity behavior in Cs2TiBr6 by employing the non-overlapping small-polaron tunneling (NSPT) mechanism as the basis. The activation energy, as determined from both the modulus spectra and DC conductivity, aligns closely, providing robust evidence for the congruence between the relaxation dynamics and the conduction mechanism. In addition to these attributes, Cs2TiBr6 exhibits a substantial dielectric constant coupled with negligible dielectric loss, thus establishing its potential suitability for energy harvesting devices.
Collapse
Affiliation(s)
- Mohamed Ben Bechir
- Laboratory of Spectroscopic and Optical Characterization of Materials (LaSCOM), Faculty of Sciences, University of Sfax BP1171-3000 Sfax Tunisia
| | - Faisal Alresheedi
- Department of Physics, College of Science, Qassim University Buraidah 51452 Saudi Arabia
| |
Collapse
|