1
|
Qi S, He X. Biomimetic Capsid-Like Nanoshells Self-Assembled from Homopolypeptides. Chemistry 2024; 30:e202401990. [PMID: 38923670 DOI: 10.1002/chem.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The preparation of capsid-like nanoshells and the elucidation of their formation pathways are crucial for the application potential of capsid-like nanomaterials. In this study, we have prepared biomimetic capsid-like nanoshells (CLNs) through the solution self-assembly of poly (β-phenethyl-L-aspartate) homopolypeptide (PPLA). The formation of CLNs is governed by an aggregation-fusion mechanism. Initially, PPLA molecules self-assemble into small spherical assemblies as subunits and the initial nuclei are formed through fusing some subunits. Subsequently, additional subunits rapidly fuse onto these nuclei, leading to the growth of full or partial CLNs during the growth phase. Moreover, the suitable condition benefiting CLNs formation is clarified by a morphological phase diagram based on the initial PPLA concentration against water content. Molecular-level measurements suggest that the molecular flexibility of PPLA is a key factor in the arrangement and fusion of subunits for the formation of CLNs. These findings offer new perspectives for a deeper understanding of the formation pathways of capsid-like nanoshells derived from synthetic polymers.
Collapse
Affiliation(s)
- Shuo Qi
- School of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241, China
| | - Xiaohua He
- School of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
2
|
Zhao J, Yu P, Dong T, Wu Y, Yang F, Wang J. Chasing weakly-bound biological water in aqueous environment near the peptide backbone by ultrafast 2D infrared spectroscopy. Commun Chem 2024; 7:82. [PMID: 38605209 PMCID: PMC11009226 DOI: 10.1038/s42004-024-01170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
There has been a long-standing debate as to how many hydrogen bonds a peptide backbone amide can form in aqueous solution. Hydrogen-bonding structural dynamics of N-ethylpropionamide (a β-peptide model) in water was examined using infrared (IR) spectroscopy. Two amide-I sub bands arise mainly from amide C=O group that forms strong H-bonds with solvent water molecules (SHB state), and minorly from that involving one weak H-bond with water (WHB state). This picture is supported by molecular dynamics simulations and ab-initio calculations. Further, thermodynamics and kinetics of the SHB and WHB species were examined mainly by chemical-exchange two-dimensional IR spectroscopy, yielding an activation energy for the SHB-to-WHB exchange of 13.25 ± 0.52 kJ mol‒1, which occurs in half picosecond at room temperature. Our results provided experimental evidence of an unstable water molecule near peptide backbone, allowing us to gain more insights into the dynamics of the protein backbone hydration.
Collapse
Affiliation(s)
- Juan Zhao
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengyun Yu
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Dong
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanzhou Wu
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianping Wang
- Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Baronio CM, Barth A. Refining protein amide I spectrum simulations with simple yet effective electrostatic models for local wavenumbers and dipole derivative magnitudes. Phys Chem Chem Phys 2024; 26:1166-1181. [PMID: 38099625 DOI: 10.1039/d3cp02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Analysis of the amide I band of proteins is probably the most wide-spread application of bioanalytical infrared spectroscopy. Although highly desirable for a more detailed structural interpretation, a quantitative description of this absorption band is still difficult. This work optimized several electrostatic models with the aim to reproduce the effect of the protein environment on the intrinsic wavenumber of a local amide I oscillator. We considered the main secondary structures - α-helices, parallel and antiparallel β-sheets - with a maximum of 21 amide groups. The models were based on the electric potential and/or the electric field component along the CO bond at up to four atoms in an amide group. They were bench-marked by comparison to Hessian matrices reconstructed from density functional theory calculations at the BPW91, 6-31G** level. The performance of the electrostatic models depended on the charge set used to calculate the electric field and potential. Gromos and DSSP charge sets, used in common force fields, were not optimal for the better performing models. A good compromise between performance and the stability of model parameters was achieved by a model that considered the electric field at the positions of the oxygen, nitrogen, and hydrogen atoms of the considered amide group. The model describes also some aspects of the local conformation effect and performs similar on its own as in combination with an explicit implementation of the local conformation effect. It is better than a combination of a local hydrogen bonding model with the local conformation effect. Even though the short-range hydrogen bonding model performs worse, it captures important aspects of the local wavenumber sensitivity to the molecular surroundings. We improved also the description of the coupling between local amide I oscillators by developing an electrostatic model for the dependency of the dipole derivative magnitude on the protein environment.
Collapse
Affiliation(s)
- Cesare M Baronio
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
4
|
Krevert C, Chavez D, Chatterjee S, Stelzl LS, Pütz S, Roeters SJ, Rudzinski JF, Fawzi NL, Girard M, Parekh SH, Hunger J. Liquid-Liquid Phase Separation of the Intrinsically Disordered Domain of the Fused in Sarcoma Protein Results in Substantial Slowing of Hydration Dynamics. J Phys Chem Lett 2023; 14:11224-11234. [PMID: 38056002 PMCID: PMC10726384 DOI: 10.1021/acs.jpclett.3c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Formation of liquid condensates plays a critical role in biology via localization of different components or via altered hydrodynamic transport, yet the hydrogen-bonding environment within condensates, pivotal for solvation, has remained elusive. We explore the hydrogen-bond dynamics within condensates formed by the low-complexity domain of the fused in sarcoma protein. Probing the hydrogen-bond dynamics sensed by condensate proteins using two-dimensional infrared spectroscopy of the protein amide I vibrations, we find that frequency-frequency correlations of the amide I vibration decay on a picosecond time scale. Interestingly, these dynamics are markedly slower for proteins in the condensate than in a homogeneous protein solution, indicative of different hydration dynamics. All-atom molecular dynamics simulations confirm that lifetimes of hydrogen-bonds between water and the protein are longer in the condensates than in the protein in solution. Altered hydrogen-bonding dynamics may contribute to unique solvation and reaction dynamics in such condensates.
Collapse
Affiliation(s)
- Carola
S. Krevert
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Chavez
- Department
of Polymer Theory, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sayantan Chatterjee
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Biomedical Engineering, The University
of Texas at Austin, 107
West Dean Keeton Street, Stop C0800, Austin, Texas 78712, United States
| | - Lukas S. Stelzl
- KOMET 1,
Institute of Physics, Johannes Gutenberg
University, Staudingerweg 7, 55099 Mainz, Germany
- Faculty of
Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), Ackermannweg 2, 55128 Mainz, Germany
| | - Sabine Pütz
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Steven J. Roeters
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Department
of Anatomy and Neurosciences, Amsterdam
UMC, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Joseph F. Rudzinski
- Department
of Polymer Theory, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- IRIS
Adlershof, Humboldt-Universität zu
Berlin, Zum Großen
Windkanal 2, 12489 Berlin, Germany
| | - Nicolas L. Fawzi
- Department
of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| | - Martin Girard
- Department
of Polymer Theory, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sapun H. Parekh
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Biomedical Engineering, The University
of Texas at Austin, 107
West Dean Keeton Street, Stop C0800, Austin, Texas 78712, United States
| | - Johannes Hunger
- Department
of Molecular Spectroscopy, Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
5
|
Torii H, Watanabe K. Asymmetry of the Electrostatic Environment as the Origin of the Symmetry Breaking Effect of the Nitrate Ion in Aqueous Solution. J Phys Chem B 2023; 127:6507-6515. [PMID: 37462156 DOI: 10.1021/acs.jpcb.3c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Elucidating the mechanism of how vibrational modes are affected by intermolecular interactions is important for a better understanding of the nature of the former as probes of the latter. Here, such an analysis is carried out for the N-O stretching modes of the nitrate ion interacting with water, with an emphasis on the symmetry breaking effect. On the basis of theoretical calculations on the structural, vibrational, and electrostatic properties of molecular clusters and spectral simulations for an aqueous solution, a transparent view is demonstrated on the mechanism that modulations of spatially local electrostatic environment give rise to structural and spectroscopic symmetry breaking effect. The electrostatic interaction model constructed here is a seven-parameter model; the use of a single electrostatic parameter, such as the electric field on a single atomic site, is found to be insufficient for quantitative evaluation. It is also shown that the frequency modulations of the N-O stretching modes in aqueous solution occur on a time scale much shorter than 0.1 ps.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
- Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| | - Kao Watanabe
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan
| |
Collapse
|
6
|
Role of the electrostatic interactions in the changes in the CN stretching frequency of benzonitrile interacting with hydrogen-bond donating molecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Chelius K, Wat JH, Phadkule A, Reppert M. Distinct electrostatic frequency tuning rates for amide I and amide I' vibrations. J Chem Phys 2021; 155:195101. [PMID: 34800962 DOI: 10.1063/5.0064518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Amide I spectroscopy probes the backbone C=O stretch vibrations of peptides and proteins. Amide I spectra are often collected in deuterated water (D2O) since this provides a cleaner background in the amide I frequency range; such data are often referred to as amide I' spectra since deuteration induces changes in the mode structure, including a roughly ∼10 cm-1 redshift. For biological samples, however, deuteration is often not possible. As amide I frequency maps are increasingly applied to quantitative protein structural analysis, this raises the interesting challenge of drawing direct connections between amide I and amide I' data. We here analyze amide I and amide I' peak frequencies for a series of dipeptides and related compounds. Changes in protonation state induce large electrostatic shifts in the peak frequencies, allowing us to amass a sizable library of data points for direct amide I/amide I' comparison. While we find an excellent linear correlation between amide I and amide I' peak frequencies, the deuteration-induced shift is smaller for more red-shifted vibrations, indicating different electrostatic tuning rates in the two solvents. H2O/D2O shifts were negligible for proline-containing dipeptides that lack exchangeable amide hydrogens, indicating that the intrinsic properties of the solvent do not strongly influence the H/D shift. These findings indicate that the distinct tuning rates observed for the two vibrations arise from modifications to the intrinsic properties of the amide bond and provide (at least for solvated dipeptides) a simple, linear "map" for translating between amide I and amide I' frequencies.
Collapse
Affiliation(s)
- Kevin Chelius
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jacob H Wat
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Amala Phadkule
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
8
|
Pinto SMV, Tasinato N, Barone V, Zanetti-Polzi L, Daidone I. A computational insight into the relationship between side chain IR line shapes and local environment in fibril-like structures. J Chem Phys 2021; 154:084105. [PMID: 33639764 DOI: 10.1063/5.0038913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infrared spectroscopy is a widely used technique to characterize protein structures and protein mediated processes. While the amide I band provides information on proteins' secondary structure, amino acid side chains are used as infrared probes for the investigation of protein reactions and local properties. In this paper, we use a hybrid quantum mechanical/classical molecular dynamical approach based on the perturbed matrix method to compute the infrared band due to the C=O stretching mode of amide-containing side chains. We calculate, at first, the infrared band of zwitterionic glutamine in water and obtain results in very good agreement with the experimental data. Then, we compute the signal arising from glutamine side chains in a microcrystal of the yeast prion Sup35-derived peptide, GNNQQNY, with a fibrillar structure. The infrared bands obtained by selective isotopic labeling of the two glutamine residues, Q4 and Q5, of each peptide were experimentally used to investigate the local hydration in the fibrillar microcrystal. The experimental spectra of the two glutamine residues, which experience different hydration environments, feature different spectral signals that are well reproduced by the corresponding calculated spectra. In addition, the analysis of the simulated spectra clarifies the molecular origin of the experimentally observed spectroscopic differences that arise from the different local electric field experienced by the two glutamine residues, which is, in turn, determined by a different hydrogen bonding pattern.
Collapse
Affiliation(s)
- Sandra M V Pinto
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, I-67100 L'Aquila, Italy
| |
Collapse
|
9
|
Feng CJ, Sinitskiy A, Pande V, Tokmakoff A. Computational IR Spectroscopy of Insulin Dimer Structure and Conformational Heterogeneity. J Phys Chem B 2021; 125:4620-4633. [PMID: 33929849 DOI: 10.1021/acs.jpcb.1c00399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have investigated the structure and conformational dynamics of insulin dimer using a Markov state model (MSM) built from extensive unbiased atomistic molecular dynamics simulations and performed infrared spectral simulations of the insulin MSM to describe how structural variation within the dimer can be experimentally resolved. Our model reveals two significant conformations to the dimer: a dominant native state consistent with other experimental structures of the dimer and a twisted state with a structure that appears to reflect a ∼55° clockwise rotation of the native dimer interface. The twisted state primarily influences the contacts involving the C-terminus of insulin's B chain, shifting the registry of its intermolecular hydrogen bonds and reorganizing its side-chain packing. The MSM kinetics predict that these configurations exchange on a 14 μs time scale, largely passing through two Markov states with a solvated dimer interface. Computational amide I spectroscopy of site-specifically 13C18O labeled amides indicates that the native and twisted conformation can be distinguished through a series of single and dual labels involving the B24F, B25F, and B26Y residues. Additional structural heterogeneity and disorder is observed within the native and twisted states, and amide I spectroscopy can also be used to gain insight into this variation. This study will provide important interpretive tools for IR spectroscopic investigations of insulin structure and transient IR kinetics experiments studying the conformational dynamics of insulin dimer.
Collapse
Affiliation(s)
- Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Anton Sinitskiy
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Vijay Pande
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Biswas S, Mallik BS. Solvent-mediated dynamics and stretching profile of amide modes: QM/MM simulations of N-methylacetamide in ionic and various molecular liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Baiz CR, Błasiak B, Bredenbeck J, Cho M, Choi JH, Corcelli SA, Dijkstra AG, Feng CJ, Garrett-Roe S, Ge NH, Hanson-Heine MWD, Hirst JD, Jansen TLC, Kwac K, Kubarych KJ, Londergan CH, Maekawa H, Reppert M, Saito S, Roy S, Skinner JL, Stock G, Straub JE, Thielges MC, Tominaga K, Tokmakoff A, Torii H, Wang L, Webb LJ, Zanni MT. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem Rev 2020; 120:7152-7218. [PMID: 32598850 PMCID: PMC7710120 DOI: 10.1021/acs.chemrev.9b00813] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.
Collapse
Affiliation(s)
- Carlos R. Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Bartosz Błasiak
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Arend G. Dijkstra
- School of Chemistry and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, U.S.A
| | - Nien-Hui Ge
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Magnus W. D. Hanson-Heine
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | - Thomas L. C. Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Seoul 02841, Republic of Korea
| | - Kevin J. Kubarych
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, U.S.A
| | - Casey H. Londergan
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, U.S.A
| | - Hiroaki Maekawa
- Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025, U.S.A
| | - Mike Reppert
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, 444-8585, Japan
| | - Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, U.S.A
| | - James L. Skinner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| | - John E. Straub
- Department of Chemistry, Boston University, Boston, MA 02215, U.S.A
| | - Megan C. Thielges
- Department of Chemistry, Indiana University, 800 East Kirkwood, Bloomington, Indiana 47405, U.S.A
| | - Keisuke Tominaga
- Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013, Japan
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Hajime Torii
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-Ku, Hamamatsu 432-8561, Japan
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, U.S.A
| | - Lauren J. Webb
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, STOP A5300, Austin, Texas 78712, U.S.A
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1396, U.S.A
| |
Collapse
|
12
|
Shiraga K, Urabe M, Matsui T, Kikuchi S, Ogawa Y. Highly precise characterization of the hydration state upon thermal denaturation of human serum albumin using a 65 GHz dielectric sensor. Phys Chem Chem Phys 2020; 22:19468-19479. [PMID: 32761010 DOI: 10.1039/d0cp02265a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological functions of proteins depend on harmonization with hydration water surrounding them. Indeed, the dynamical transition of proteins, such as thermal denaturation, is dependent on the changes in the mobility of hydration water. However, the role of hydration water during dynamical transition is yet to be fully understood due to technical limitations in precisely characterizing the amount of hydration water. A state-of-the-art CMOS dielectric sensor consisting of 65 GHz LC resonators addressed this issue by utilizing the feature that oscillation frequency sensitively shifts in response to the complex dielectric constant at 65 GHz with extremely high precision. This study aimed to establish an analytical algorithm to derive the hydration number from the measured frequency shift and to demonstrate the transition of hydration number upon the thermal denaturation of human serum albumin. The determined hydration number in the native state drew a "global" hydration picture beyond the first solvation shell, with substantially reduced uncertainty of the hydration number (about ±1%). This allowed the detection of a rapid increase in the hydration number at about 55 °C during the heating process, which was in excellent phase with the irreversible rupture of the α-helical structure into solvent-exposed extended chains, whereas the hydration number did not trace the forward path in the subsequent cooling process. Our result indicates that the weakening of water hydrogen bonds trigger the unfolding of the protein structure first, followed by the changes in the number of hydration water as a consequence of thermal denaturation.
Collapse
Affiliation(s)
- Keiichiro Shiraga
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
14
|
Cai K, Liu J, Liu Y, Chen F, Yan G, Lin H. Application of a transparent window vibrational probe (azido probe) to the structural dynamics of model dipeptides and amyloid β-peptide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117681. [PMID: 31685425 DOI: 10.1016/j.saa.2019.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/02/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
The azido asymmetric stretching motion is widely used for the elucidation of the intrinsic conformational preference and folding mechanism of protein since it has strong vibrational absorbance in the spectral transparent windows. However, the possible secondary structural disturbance induced by the insertion of azido group in the side chain of polypeptides should be carefully evaluated. Here, DFT calculation and enhanced sampling method were employed for model dipeptides with or without azido substitution, and the outcome results show that the lower potential energy basins of isolated model dipeptides are consistent with the preferred structural distributions of model dipeptides in aqueous solution. The azido asymmetric stretching frequency shows its sensitivity to the backbone configurations just like amide-I vibration does, and the azido vibration exhibits great potential as a structural reporter in the transparent window. For the evaluation of the application of azido group in biologically related system, the structural dynamics of Aβ37-42 and N3-Aβ37-42 fragments and the self-assemble process of their protofiliments in aqueous solution were demonstrated. The outcome results show that the structural fluctuations of Aβ37-42 and its protofilament in aqueous solution are quite similar with or without azido substitution, and the dewetting transitions of Aβ37-42 and N3-Aβ37-42 β-sheet layers are both complete within 30 ns and assemble into stable protofilaments. Therefore, the azido asymmetric vibrational motion is a minimally invasive structural probe and would not introduce much disturbance to the structural dynamics of polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China.
| | - Jia Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China
| | - Ya'nan Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, 361005, Fujian, PR China
| | - Feng Chen
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, 352100, PR China
| | - Guiyang Yan
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, 352100, PR China
| | - Huiqiu Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, Fujian, PR China
| |
Collapse
|
15
|
Wang H, Xu H, Liu Q, Zheng X. The noncoincidence phenomenon of acetonylacetone CO stretching in a binary mixture and the aggregation-induced split theory. RSC Adv 2020; 10:30982-30989. [PMID: 35516043 PMCID: PMC9056351 DOI: 10.1039/d0ra02932g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022] Open
Abstract
This article aims to correlate the noncoincidence effect phenomenon with the aggregation state of acetylacetone CO stretching in a binary mixture. CO stretching noncoincidence effect (NCE) was observed not only between IR and Raman spectra but also between the isotropic and anisotropic Raman spectra of acetonylacetone. The difference in CO stretching wavenumbers of the isotropic and anisotropic Raman spectra (NCE value) in a binary mixture at different concentrations has been calculated. We found that both isotropic and anisotropic Raman wavenumbers of CO stretching increase with the dilution of acetonylacetone by CCl4 while the NCE value decreases. These noncoincidence and concentration effect phenomena seem to go against the quantum theory. Herein, we proposed an aggregation-induced split (AIS) model to explain the NCE phenomenon and concentration effect. The experimental data were consistent with the DFT calculations performed at the B3LYP-D3/6-311++G (d,p) levels based on the proposed model. The dynamics of transformation from monomers to an aggregated structure can be easily controlled by tuning the concentration. Solvent dependent experiments show that the value of NCE decreased with the increase of the solvent dielectric constant at the same concentration, which is in accordance with Logan's theory. Both the isotropic and anisotropic Raman wavenumbers of the CO stretch increase with the dilution of acetonylacetone by CCl4, while the separation between isotropic and anisotropic Raman wavenumbers (Δυ) decrease.![]()
Collapse
Affiliation(s)
- Huigang Wang
- Department of Chemistry
- Key Laboratory of Advanced Textiles Materials and Manufacture Technology of the Ministry of Education
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles of the Ministry of Education
- Zhejiang Sci-Tech University
- Hangzhou 310018
| | - Hang Xu
- Department of Chemistry
- Key Laboratory of Advanced Textiles Materials and Manufacture Technology of the Ministry of Education
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles of the Ministry of Education
- Zhejiang Sci-Tech University
- Hangzhou 310018
| | - Qiuna Liu
- Department of Chemistry
- Key Laboratory of Advanced Textiles Materials and Manufacture Technology of the Ministry of Education
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles of the Ministry of Education
- Zhejiang Sci-Tech University
- Hangzhou 310018
| | - Xuming Zheng
- Department of Chemistry
- Key Laboratory of Advanced Textiles Materials and Manufacture Technology of the Ministry of Education
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles of the Ministry of Education
- Zhejiang Sci-Tech University
- Hangzhou 310018
| |
Collapse
|
16
|
Vieira Pinto SM, Tasinato N, Barone V, Amadei A, Zanetti-Polzi L, Daidone I. Modeling amino-acid side chain infrared spectra: the case of carboxylic residues. Phys Chem Chem Phys 2020; 22:3008-3016. [DOI: 10.1039/c9cp04774c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Infrared (IR) spectroscopy is commonly utilized for the investigation of protein structures and protein-mediated processes.
Collapse
Affiliation(s)
- Sandra Mónica Vieira Pinto
- Scuola Normale Superiore
- I-56126 Pisa
- Italy
- Department of Physical and Chemical Sciences
- University of L'Aquila
| | | | | | - Andrea Amadei
- Department of Chemical and Technological Sciences
- University of Rome “Tor Vergata
- I-00185 Rome
- Italy
| | - Laura Zanetti-Polzi
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67010 L'Aquila
- Italy
- CNR Institute of Nanoscience
| | - Isabella Daidone
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67010 L'Aquila
- Italy
| |
Collapse
|
17
|
Kananenka AA, Yao K, Corcelli SA, Skinner JL. Machine Learning for Vibrational Spectroscopic Maps. J Chem Theory Comput 2019; 15:6850-6858. [DOI: 10.1021/acs.jctc.9b00698] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alexei A. Kananenka
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Kun Yao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - J. L. Skinner
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Feng CJ, Dhayalan B, Tokmakoff A. Refinement of Peptide Conformational Ensembles by 2D IR Spectroscopy: Application to Ala‒Ala‒Ala. Biophys J 2019; 114:2820-2832. [PMID: 29925019 DOI: 10.1016/j.bpj.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 10/28/2022] Open
Abstract
Characterizing ensembles of intrinsically disordered proteins is experimentally challenging because of the ill-conditioned nature of ensemble determination with limited data and the intrinsic fast dynamics of the conformational ensemble. Amide I two-dimensional infrared (2D IR) spectroscopy has picosecond time resolution to freeze structural ensembles as needed for probing disordered-protein ensembles and conformational dynamics. Also, developments in amide I computational spectroscopy now allow a quantitative and direct prediction of amide I spectra based on conformational distributions drawn from molecular dynamics simulations, providing a route to ensemble refinement against experimental spectra. We performed a Bayesian ensemble refinement method on Ala-Ala-Ala against isotope-edited Fourier-transform infrared spectroscopy and 2D IR spectroscopy and tested potential factors affecting the quality of ensemble refinements. We found that isotope-edited 2D IR spectroscopy provides a stringent constraint on Ala-Ala-Ala conformations and returns consistent conformational ensembles with the dominant ppII conformer across varying prior distributions from many molecular dynamics force fields and water models. The dominant factor influencing ensemble refinements is the systematic frequency uncertainty from spectroscopic maps. However, the uncertainty of conformer populations can be significantly reduced by incorporating 2D IR spectra in addition to traditional Fourier-transform infrared spectra. Bayesian ensemble refinement against isotope-edited 2D IR spectroscopy thus provides a route to probe equilibrium-complex protein ensembles and potentially nonequilibrium conformational dynamics.
Collapse
Affiliation(s)
- Chi-Jui Feng
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
| | - Balamurugan Dhayalan
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois.
| |
Collapse
|
19
|
Theoretical analysis and modeling of the electrostatic responses of the vibrational and NMR spectroscopic properties of the cyanide anion. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Jansen TLC, Saito S, Jeon J, Cho M. Theory of coherent two-dimensional vibrational spectroscopy. J Chem Phys 2019; 150:100901. [DOI: 10.1063/1.5083966] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas la Cour Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan and The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Jonggu Jeon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|
21
|
Ultrafast energy relaxation dynamics of amide I vibrations coupled with protein-bound water molecules. Nat Commun 2019; 10:1010. [PMID: 30824834 PMCID: PMC6397197 DOI: 10.1038/s41467-019-08899-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
The influence of hydration water on the vibrational energy relaxation in a protein holds the key to understand ultrafast protein dynamics, but its detection is a major challenge. Here, we report measurements on the ultrafast vibrational dynamics of amide I vibrations of proteins at the lipid membrane/H2O interface using femtosecond time-resolved sum frequency generation vibrational spectroscopy. We find that the relaxation time of the amide I mode shows a very strong dependence on the H2O exposure, but not on the D2O exposure. This observation indicates that the exposure of amide I bond to H2O opens up a resonant relaxation channel and facilitates direct resonant vibrational energy transfer from the amide I mode to the H2O bending mode. The protein backbone motions can thus be energetically coupled with protein-bound water molecules. Our findings highlight the influence of H2O on the ultrafast structure dynamics of proteins.
Collapse
|
22
|
Torii H. Strategy for Modeling the Electrostatic Responses of the Spectroscopic Properties of Proteins. J Phys Chem B 2017; 122:154-164. [PMID: 29192780 DOI: 10.1021/acs.jpcb.7b10791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For better understanding and more efficient use of the spectroscopic probes (vibrational and NMR) of the local electrostatic situations inside proteins, appropriate modeling of the properties of those probes is essential. The present study is devoted to examining the strategy for constructing such models. A more well-founded derivation than the ones in previous studies is given in constructing the models. Theoretical analyses are conducted on two representative example cases related to proteins, i.e., the peptide group of the main chains and the CO and NO ligands to the Fe2+ ion of heme, with careful treatment of the behavior of electrons in the electrostatic responses and with verification of consistency with observable quantities. It is shown that, for the stretching frequencies and NMR chemical shifts, it is possible to construct reasonable electrostatic interaction models that encompass the situations of hydration and uniform electric field environment and thus are applicable also to the cases of nonuniform electrostatic situations, which are highly expected for inside of proteins.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Chemistry, Faculty of Education and Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University , 836 Ohya, Shizuoka 422-8529, Japan
| |
Collapse
|
23
|
Local order and vibrational coupling of the C=O Stretching Mode of γ-Caprolactone in liquid binary mixtures. Sci Rep 2017; 7:12182. [PMID: 28939813 PMCID: PMC5610304 DOI: 10.1038/s41598-017-12030-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/01/2017] [Indexed: 11/08/2022] Open
Abstract
The isotropic and anisotropic parts Raman spectra of γ-Caprolactone in the binary mixture at different concentrations have been measured. The non-coincidence effect (NCE) of γ-Caprolactone was determined in carbon tetrachloride solution and DMSO solution. The NCE of the ν11(C=O) stretching mode in the γ-Caprolactone/DMSO mixtures exhibits a linear plot, in contrast to that in the γ-Caprolactone/CCl4 mixtures, which shows an upward (convex) curvature. The reduction and enhancement of the dimer structure (short-range orientational order) of γ-Caprolactone in the γ-Caprolactone/DMSO and γ-Caprolactone/CCl4 mixtures respectively may play a major role in shifting of peak frequencies, thus the geometries of monomer and dimer of γ-Caprolactone were calculated at the B3LYP-D3/6-311 G (d,p) level of theory. We proposed aggregated model to explain the γ-Caprolactone C=O vibration NCE phenomenon and its concentration effect and found it largely consistent with our experimental findings. Solvent dependent experiment show the value of NCE declined with the increase of the solvent dielectric constant under the same condition which is consistent with the Logan's theory.
Collapse
|
24
|
Lomont JP, Ostrander JS, Ho JJ, Petti MK, Zanni MT. Not All β-Sheets Are the Same: Amyloid Infrared Spectra, Transition Dipole Strengths, and Couplings Investigated by 2D IR Spectroscopy. J Phys Chem B 2017; 121:8935-8945. [PMID: 28851219 DOI: 10.1021/acs.jpcb.7b06826] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the transition dipole strengths and frequencies of the amyloid β-sheet amide I mode for the aggregated proteins amyloid-β1-40, calcitonin, α-synuclein, and glucagon. According to standard vibrational coupling models for proteins, the frequencies of canonical β-sheets are set by their size and structural and environmental disorder, which determines the delocalization length of the vibrational excitons. The larger the delocalization the lower the frequency of the main infrared-allowed transition, A⊥. The models also predict an accompanying increase in transition dipole strength. For the proteins measured here, we find no correlation between transition dipole strengths and amyloid β-sheet transition frequency. To understand this observation, we have extracted from the protein data bank crystal structures of amyloid peptides from which we calculate the amide I vibrational couplings, and we use these in a model β-sheet Hamiltonian to simulate amyloid vibrational spectra. We find that the variations in amyloid β-sheet structures (e.g., dihedral angles, interstrand distances, and orientations) create significant differences in the average values for interstrand and nearest neighbor couplings, and that those variations encompass the variation in measured A⊥ frequencies. We also find that off-diagonal disorder about the average values explains the range of transition dipole strengths observed experimentally. Thus, we conclude that the lack of correlation between transition dipole-strength and frequency is caused by variations in amyloid β-sheet structure. Taken together, these results indicate that the amide I frequency is very sensitive to amyloid β-sheet structure, the β-sheets of these 4 proteins are not identical, and the assumption that frequency of amyloids scales with β-sheet size cannot be adopted without an accompanying measurement of transition dipole strengths.
Collapse
Affiliation(s)
- Justin P Lomont
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Jia-Jung Ho
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, WI 53706, United States
| |
Collapse
|
25
|
Fujii K, Yoshitake M, Watanabe H, Takamuku T, Umebayashi Y. Hydrogen bonding in protic and aprotic amide mixtures: Low-frequency Raman spectroscopy, small-angle neutron scattering, and molecular dynamics simulations. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Cunha AV, Salamatova E, Bloem R, Roeters SJ, Woutersen S, Pshenichnikov MS, Jansen TLC. Interplay between Hydrogen Bonding and Vibrational Coupling in Liquid N-Methylacetamide. J Phys Chem Lett 2017; 8:2438-2444. [PMID: 28510458 PMCID: PMC5462486 DOI: 10.1021/acs.jpclett.7b00731] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Intrinsically disordered proteins play an important role in biology, and unraveling their labile structure presents a vital challenge. However, the dynamical structure of such proteins thwarts their study by standard techniques such as X-ray diffraction and NMR spectroscopy. Here, we use a neat liquid composed of N-methylacetamide molecules as a model system to elucidate dynamical and structural properties similar to those one can expect to see in intrinsically disordered proteins. To examine the structural dynamics in the neat liquid, we combine molecular dynamics, response-function-based spectral simulations, and two-dimensional polarization-resolved infrared spectroscopy in the amide I (CO stretch) region. The two-dimensional spectra reveal a delicate interplay between hydrogen bonding and intermolecular vibrational coupling effects, observed through a fast anisotropy decay. The present study constitutes a general platform for understanding the structure and dynamics of highly disordered proteins.
Collapse
Affiliation(s)
- Ana V. Cunha
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Evgeniia Salamatova
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Robbert Bloem
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Steven J. Roeters
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Maxim S. Pshenichnikov
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
27
|
Błasiak B, Londergan CH, Webb LJ, Cho M. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems. Acc Chem Res 2017; 50:968-976. [PMID: 28345879 DOI: 10.1021/acs.accounts.7b00002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The vibrational frequency of a chosen normal mode is one of the most accurately measurable spectroscopic properties of molecules in condensed phases. Accordingly, infrared absorption and Raman scattering spectroscopy have provided valuable information on both distributions and ensemble-average values of molecular vibrational frequencies, and these frequencies are now routinely used to investigate structure, conformation, and even absolute configuration of chemical and biological molecules of interest. Recent advancements in coherent time-domain nonlinear vibrational spectroscopy have allowed the study of heterogeneous distributions of local structures and thermally driven ultrafast fluctuations of vibrational frequencies. To fully utilize IR probe functional groups for quantitative bioassays, a variety of biological and chemical techniques have been developed to site-specifically introduce vibrational probe groups into proteins and nucleic acids. These IR-probe-labeled biomolecules and chemically reactive systems are subject to linear and nonlinear vibrational spectroscopic investigations and provide information on the local electric field, conformational changes, site-site protein contacts, and/or function-defining features of biomolecules. A rapidly expanding library of data from such experiments requires an interpretive method with atom-level chemical accuracy. However, despite prolonged efforts to develop an all-encompassing theory for describing vibrational solvatochromism and electrochromism as well as dynamic fluctuations of instantaneous vibrational frequencies, purely empirical and highly approximate theoretical models have often been used to interpret experimental results. They are, in many cases, based on the simple assumption that the vibrational frequency of an IR reporter is solely dictated by electric potential or field distribution around the vibrational chromophore. Such simplified description of vibrational solvatochromism generally referred to as vibrational Stark effect theory has been considered to be quite appealing and, even in some cases, e.g., carbonyl stretch modes in amide, ester, ketone, and carbonate compounds or proteins, it works quantitatively well, which makes it highly useful in determining the strength of local electric field around the IR chromophore. However, noting that the vibrational frequency shift results from changes of solute-solvent intermolecular interaction potential along its normal coordinate, Pauli exclusion repulsion, polarization, charge transfer, and dispersion interactions, in addition to the electrostatic interaction between distributed charges of both vibrational chromophore and solvent molecules, are to be properly included in the theoretical description of vibrational solvatochromism. Since the electrostatic and nonelectrostatic intermolecular interaction components have distinctively different distance and orientation dependences, they affect the solvatochromic vibrational properties in a completely different manner. Over the past few years, we have developed a systematic approach to simulating vibrational solvatochromic data based on the effective fragment potential approach, one of the most accurate and rigorous theories on intermolecular interactions. We have further elucidated the interplay of local electric field with the general vibrational solvatochromism of small IR probes in either solvents or complicated biological systems, with emphasis on contributions from non-Coulombic intermolecular interactions to vibrational frequency shifts and fluctuations. With its rigorous foundation and close relation to quantitative interpretation of experimental data, this and related theoretical approaches and experiments will be of use in studying and quantifying the structure and dynamics of biomolecules with unprecedented time and spatial resolution when combined with time-resolved vibrational spectroscopy and chemically sensitive vibrational imaging techniques.
Collapse
Affiliation(s)
- Bartosz Błasiak
- Center
of Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), 145
Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Casey H. Londergan
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041-1392, United States
| | - Lauren J. Webb
- Department
of Chemistry, Center for Nano- and Molecular Science and Technology,
and Institute for Cell and Molecular Biology, The University of Texas at Austin, 105
E. 24th Street, STOP A5300, Austin, Texas 78712, United States
| | - Minhaeng Cho
- Center
of Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), 145
Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department
of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
28
|
Schneider SH, Kratochvil HT, Zanni MT, Boxer SG. Solvent-Independent Anharmonicity for Carbonyl Oscillators. J Phys Chem B 2017; 121:2331-2338. [PMID: 28225620 DOI: 10.1021/acs.jpcb.7b00537] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physical origins of vibrational frequency shifts have been extensively studied in order to understand noncovalent intermolecular interactions in the condensed phase. In the case of carbonyls, vibrational solvatochromism, MD simulations, and vibrational Stark spectroscopy suggest that the frequency shifts observed in simple solvents arise predominately from the environment's electric field due to the vibrational Stark effect. This is contrary to many previously invoked descriptions of vibrational frequency shifts, such as bond polarization, whereby the bond's force constant and/or partial nuclear charges are altered due to the environment, often illustrated in terms of favored resonance structures. Here we test these hypotheses using vibrational solvatochromism as measured using 2D IR to assess the solvent dependence of the bond anharmonicity. These results indicate that the carbonyl bond's anharmonicity is independent of solvent as tested using hexanes, DMSO, and D2O and is supported by simulated 2D spectra. In support of the linear vibrational Stark effect, these 2D IR measurements are consistent with the assertion that the Stark tuning rate is unperturbed by the electric field generated by both hydrogen and non-hydrogen bonding environments and further extends the general applicability of carbonyl probes for studying intermolecular interactions.
Collapse
Affiliation(s)
- Samuel H Schneider
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Huong T Kratochvil
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| |
Collapse
|
29
|
Xu W, Wu F, Zhao Y, Zhou R, Wang H, Zheng X, Ni B. Study on the noncoincidence effect phenomenon using matrix isolated Raman spectra and the proposed structural organization model of acetone in condense phase. Sci Rep 2017; 7:43835. [PMID: 28256639 PMCID: PMC5335557 DOI: 10.1038/srep43835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/31/2017] [Indexed: 12/03/2022] Open
Abstract
The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, MOE, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengqi Wu
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, MOE, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanying Zhao
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, MOE, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ran Zhou
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, MOE, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huigang Wang
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, MOE, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xuming Zheng
- Department of Chemistry and Engineering Research Center for Eco-dyeing and Finishing of Textiles, MOE, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bukuo Ni
- Texas A&M Univ, Dept Chem, Commerce, TX 75429, USA
| |
Collapse
|
30
|
Yadav VK, Klein ML. Probing the dynamics of N-methylacetamide in methanol via ab initio molecular dynamics. Phys Chem Chem Phys 2017; 19:12868-12875. [PMID: 28470307 DOI: 10.1039/c7cp00690j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-dimensional infrared (2D IR) spectroscopy of amide 1 vibrational bands provides a valuable probe of proteins as well as molecules such as N-methylacetamide (NMA), which present peptide-like H-bonding possibilities to a solvent.
Collapse
Affiliation(s)
- Vivek K. Yadav
- ICMS
- Department of Chemistry
- Temple University
- Philadelphia
- USA
| | | |
Collapse
|
31
|
Hahn S. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results. J Chem Phys 2016; 145:164113. [PMID: 27802648 DOI: 10.1063/1.4965958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.
Collapse
Affiliation(s)
- Seungsoo Hahn
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu 156-756, Seoul, South Korea
| |
Collapse
|
32
|
Torii H. Unified Electrostatic Understanding on the Solvation-Induced Changes in the CN Stretching Frequency and the NMR Chemical Shifts of a Nitrile. J Phys Chem A 2016; 120:7137-44. [DOI: 10.1021/acs.jpca.6b06607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hajime Torii
- Department
of Chemistry,
Faculty of Education, and Department of Optoelectronics and Nanostructure
Science, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| |
Collapse
|
33
|
Cunha AV, Bondarenko AS, Jansen TLC. Assessing Spectral Simulation Protocols for the Amide I Band of Proteins. J Chem Theory Comput 2016; 12:3982-92. [PMID: 27348022 DOI: 10.1021/acs.jctc.6b00420] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We present a benchmark study of spectral simulation protocols for the amide I band of proteins. The amide I band is widely used in infrared spectroscopy of proteins due to the large signal intensity, high sensitivity to hydrogen bonding, and secondary structural motifs. This band has, thus, proven valuable in many studies of protein structure-function relationships. We benchmark spectral simulation protocols using two common force fields in combination with several electrostatic mappings and coupling models. The results are validated against experimental linear absorption and two-dimensional infrared spectroscopy for three well-studied proteins. We find two-dimensional infrared spectroscopy to be much more sensitive to the simulation protocol than linear absorption and report on the best simulation protocols. The findings demonstrate that there is still room for ideas to improve the existing models for the amide I band of proteins.
Collapse
Affiliation(s)
- Ana V Cunha
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anna S Bondarenko
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
34
|
Reppert M, Tokmakoff A. Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics. Annu Rev Phys Chem 2016; 67:359-86. [DOI: 10.1146/annurev-physchem-040215-112055] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mike Reppert
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
35
|
Reppert M, Tokmakoff A. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy. J Chem Phys 2016; 143:061102. [PMID: 26277120 DOI: 10.1063/1.4928637] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An accurate method for predicting the amide I vibrational spectrum of a given protein structure has been sought for many years. Significant progress has been made recently by sampling structures from molecular dynamics simulations and mapping local electrostatic variables onto the frequencies of individual amide bonds. Agreement with experiment, however, has remained largely qualitative. Previously, we used dipeptide fragments and isotope-labeled constructs of the protein G mimic NuG2b as experimental standards for developing and testing amide I frequency maps. Here, we combine these datasets to test different frequency-map models and develop a novel method to produce an optimized four-site potential (4P) map based on the CHARMM27 force field. Together with a charge correction for glycine residues, the optimized map accurately describes both experimental datasets, with average frequency errors of 2-3 cm(-1). This 4P map is shown to be convertible to a three-site field map which provides equivalent performance, highlighting the viability of both field- and potential-based maps for amide I spectral modeling. The use of multiple sampling points for local electrostatics is found to be essential for accurate map performance.
Collapse
Affiliation(s)
- Mike Reppert
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrei Tokmakoff
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
36
|
Torii H, Noge S. Roles of the scalar and vector components of the solvation effects on the vibrational properties of hydrogen- or halogen-bond accepting stretching modes. Phys Chem Chem Phys 2016; 18:10081-96. [PMID: 27009802 DOI: 10.1039/c5cp08008h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvation-induced vibrational frequency shifts and infrared (IR) intensity changes of the hydrogen- or halogen-bond accepting stretching modes, especially their dependence on the angular position of the hydrogen- or halogen-bond donating molecule, are examined theoretically. Calculations are carried out for some modes of hydrogen- or halogen-bonding molecular complexes, including the S[double bond, length as m-dash]O stretch of dimethyl sulfoxide-(13)C2H2O, the C[triple bond, length as m-dash]N stretch of acetonitrileH2O, and the amide I' mode of the N-methylacetamide-d1BrNC 1 : 1 complex. It is shown that, in all the example cases dealt with in this study, the frequency shift depends rather strongly on the hydrogen- or halogen-bond angle (e.g., S[double bond, length as m-dash]OH angle), with a larger low-frequency shift as the hydrogen or halogen bond becomes more bent, indicating the generality of the results obtained for the amide I' mode of the N-methylacetamide-d1(2)H2O 1 : 1 complex in a previous study. Contrary to our vague expectation, the frequency shift is not well correlated to the hydrogen- or halogen-bond distance or strength, but nevertheless, it is well reproduced by an electrostatic interaction model if it is carefully constructed by considering the scalar and vector components separately in a reasonable way. On the basis of this electrostatic interaction model, the reason why our vague expectation is not realized is clarified, and a unified understanding is achieved on the hydration-induced high-frequency shift of the C[triple bond, length as m-dash]N stretch and the low-frequency shifts of the S[double bond, length as m-dash]O stretch and amide I'. With regard to the IR intensity, it is shown that, in some of the example cases, it also has rather strong angular position dependence. The mechanism of the IR intensity changes is estimated by analyzing the dipole derivative vector, especially its angular relation with the hydrogen or halogen bond.
Collapse
Affiliation(s)
- Hajime Torii
- Department of Chemistry, Faculty of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| | | |
Collapse
|
37
|
Bondarenko AS, Jansen TLC. Application of two-dimensional infrared spectroscopy to benchmark models for the amide I band of proteins. J Chem Phys 2016; 142:212437. [PMID: 26049457 DOI: 10.1063/1.4919716] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this paper, we present a novel benchmarking method for validating the modelling of vibrational spectra for the amide I region of proteins. We use the linear absorption spectra and two-dimensional infrared spectra of four experimentally well-studied proteins as a reference and test nine combinations of molecular dynamics force fields, vibrational frequency mappings, and coupling models. We find that two-dimensional infrared spectra provide a much stronger test of the models than linear absorption does. The best modelling approach in the present study still leaves significant room for future improvement. The presented benchmarking scheme, thus, provides a way of validating future protocols for modelling the amide I band in proteins.
Collapse
Affiliation(s)
- Anna S Bondarenko
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
38
|
Ravi Kumar V, Verma C, Umapathy S. Molecular dynamics and simulations study on the vibrational and electronic solvatochromism of benzophenone. J Chem Phys 2016; 144:064302. [DOI: 10.1063/1.4941058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Cai K, Du F, Zheng X, Liu J, Zheng R, Zhao J, Wang J. General Applicable Frequency Map for the Amide-I Mode in β-Peptides. J Phys Chem B 2016; 120:1069-79. [PMID: 26824578 DOI: 10.1021/acs.jpcb.5b11643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this work, a general applicable amide-I vibrational frequency map (GA map) for β-peptides in a number of common solvents was constructed, based on a peptide derivative, N-ethylpropionamide (NEPA). The map utilizes force fields at the ab initio computational level to accurately describe molecular structure and solute-solvent interactions, and also force fields at the molecular mechanics level to take into account long-range solute-solvent interactions. The results indicate that the GA map works reasonably for mapping the vibrational frequencies of the amide-I local-modes for β-peptides, holding promises for understanding the complicated infrared spectra of the amide-I mode in β-polypeptides.
Collapse
Affiliation(s)
- Kaicong Cai
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Fenfen Du
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Xuan Zheng
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Jia Liu
- College of Chemistry and Chemical Engineering, Fujian Normal University , Fuzhou, Fujian 350007, P. R. China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen, Fujian 361005, P. R. China
| | - Renhui Zheng
- Beijing National Laboratory for Molecular Sciences, Structural Chemistry of Unstable and Stable Species Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
40
|
Torii H, Kawanaka M. Secondary Structure Dependence and Hydration Effect of the Infrared Intensity of the Amide II Mode of Peptide Chains. J Phys Chem B 2015; 120:1624-34. [DOI: 10.1021/acs.jpcb.5b08258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hajime Torii
- Department
of Chemistry, Faculty of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
- Department
of Optoelectronics and Nanostructure Science, Graduate School of Science
and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Megumi Kawanaka
- Department
of Chemistry, Faculty of Education, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| |
Collapse
|